
Google File System 

The Google File System is one online tool developed by Google. 

Google is a multi-billion-dollar company. It's one of the big power players on the World Wide 

Web and beyond. The company relies on a distributed computing system to provide users with 

the infrastructure they need to access, create and alter data. Surely Google buys state-of-the-art 

computers and servers to keep things running smoothly, right? 

Wrong. The machines that power Google's operations aren't cutting-edge power computers with 

lots of bells and whistles. In fact, they're relatively inexpensive machines running on Linux 

operating systems. How can one of the most influential companies on the Web rely on cheap 

hardware? It's due to the Google File System (GFS), which capitalizes on the strengths of off-

the-shelf servers while compensating for any hardware weaknesses. It's all in the design. 

Google uses the GFS to organize and manipulate huge files and to allow application developers 

the research and development resources they require. The GFS is unique to Google and isn't for 

sale. But it could serve as a model for file systems for organizations with similar needs. 

Some GFS details remain a mystery to anyone outside of Google. For example, Google doesn't 

reveal how many computers it uses to operate the GFS. In official Google papers, the company 

only says that there are "thousands" of computers in the system (source: Google). But despite 

this veil of secrecy, Google has made much of the GFS's structure and operation public 

knowledge. 

Append vs. Rewrite 

The GFS team optimized the system for appended files rather than rewrites. That's because 

clients within Google rarely need to overwrite files -- they add data onto the end of files instead. 

While it's still possible to overwrite data on a file in the GFS, the system doesn't handle those 

processes very efficiently 

 

 

Contents: 

1. Google File System Basics 

2. Google File System Architecture 

3. Using the Google File System 

4. Other Google File System Functions 

5. Google File System Hardware 

 



1. Google File System Basics 

Google developers routinely deal with large files that can be difficult to manipulate using a 

traditional computer file system. The size of the files drove many of the decisions programmers 

had to make for the GFS's design. Another big concern was scalability, which refers to the ease 

of adding capacity to the system. A system is scalable if it's easy to increase the system's 

capacity. The system's performance shouldn't suffer as it grows. Google requires a very large 

network of computers to handle all of its files, so scalability is a top concern. 

Because the network is so huge, monitoring and maintaining it is a challenging task. While 

developing the GFS, programmers decided to automate as much of the administrative duties 

required to keep the system running as possible. This is a key principle of autonomic 

computing, a concept in which computers are able to diagnose problems and solve them in real 

time without the need for human intervention. The challenge for the GFS team was to not only 

create an automatic monitoring system, but also to design it so that it could work across a huge 

network of computers. 

The key to the team's designs was the concept of simplification. They came to the conclusion 

that as systems grow more complex, problems arise more often. A simple approach is easier to 

control, even when the scale of the system is huge. 

Based on that philosophy, the GFS team decided that users would have access to basic file 

commands. These include commands like open, create, read, write and close files. The team 

also included a couple of specialized commands: append and snapshot. They created the 

specialized commands based on Google's needs. Append allows clients to add information to an 

existing file without overwriting previously written data. Snapshot is a command that creates 

quick copy of a computer's contents. 

Files on the GFS tend to be very large, usually in the multi-gigabyte (GB) range. Accessing and 

manipulating files that large would take up a lot of the network's bandwidth. Bandwidth is the 

capacity of a system to move data from one location to another. The GFS addresses this problem 

by breaking files up into chunks of 64 megabytes (MB) each. Every chunk receives a unique 64-

bit identification number called a chunk handle. While the GFS can process smaller files, its 

developers didn't optimize the system for those kinds of tasks. 

By requiring all the file chunks to be the same size, the GFS simplifies resource application. It's 

easy to see which computers in the system are near capacity and which are underused. It's also 

easy to port chunks from one resource to another to balance the workload across the system. 

Sharing the Load 
Distributed computing is all about networking several computers together and taking advantage 

of their individual resources in a collective way. Each computer contributes some of its 

resources (such as memory, processing power and hard drive space) to the overall network. It 

turns the entire network into a massive computer, with each individual computer acting as a 

processor and data storage device. 



2. Google File System Architecture 

Google organized the GFS into clusters of computers. A cluster is simply a network of 

computers. Each cluster might contain hundreds or even thousands of machines. Within GFS 

clusters there are three kinds of entities: clients, master servers and chunkservers. 

In the world of GFS, the term "client" refers to any entity that makes a file request. Requests can 

range from retrieving and manipulating existing files to creating new files on the system. Clients 

can be other computers or computer applications. You can think of clients as the customers of 

the GFS. 

The master server acts as the coordinator for the cluster. The master's duties include maintaining 

an operation log, which keeps track of the activities of the master's cluster. The operation log 

helps keep service interruptions to a minimum -- if the master server crashes, a replacement 

server that has monitored the operation log can take its place. The master server also keeps track 

of metadata, which is the information that describes chunks. The metadata tells the master 

server to which files the chunks belong and where they fit within the overall file. Upon startup, 

the master polls all the chunkservers in its cluster. The chunkservers respond by telling the 

master server the contents of their inventories. From that moment on, the master server keeps 

track of the location of chunks within the cluster. 

There's only one active master server per cluster at any one time (though each cluster has 

multiple copies of the master server in case of a hardware failure). That might sound like a good 

recipe for a bottleneck -- after all, if there's only one machine coordinating a cluster of thousands 

of computers, wouldn't that cause data traffic jams? The GFS gets around this sticky situation by 

keeping the messages the master server sends and receives very small. The master server doesn't 

actually handle file data at all. It leaves that up to the chunkservers. 

Chunkservers are the workhorses of the GFS. They're responsible for storing the 64-MB file 

chunks. The chunkservers don't send chunks to the master server. Instead, they send requested 

chunks directly to the client. The GFS copies every chunk multiple times and stores it on 

different chunkservers. Each copy is called a replica. By default, the GFS makes three replicas 

per chunk, but users can change the setting and make more or fewer replicas if desired. 

Which Replica Does GFS use? 

The GFS separates replicas into two categories: primary replicas and secondary replicas. A 

primary replica is the chunk that a chunkserver sends to a client. Secondary replicas serve as 

backups on other chunkservers. The master server decides which chunks will act as primary or 

secondary. If the client makes changes to the data in the chunk, then the master server lets the 

chunkservers with secondary replicas know they have to copy the new chunk off the primary 

chunkserver to stay current. 

 



3. Using the Google File System 

File requests follow a standard work flow. A read request is simple -- the client sends a request 

to the master server to find out where the client can find a particular file on the system. The 

server responds with the location for the primary replica of the respective chunk. The primary 

replica holds a lease from the master server for the chunk in question. 

If no replica currently holds a lease, the master server designates a chunk as the primary. It does 

this by comparing the IP address of the client to the addresses of the chunkservers containing the 

replicas. The master server chooses the chunkserver closest to the client. That chunkserver's 

chunk becomes the primary. The client then contacts the appropriate chunkserver directly, which 

sends the replica to the client. 

Write requests are a little more complicated. The client still sends a request to the master server, 

which replies with the location of the primary and secondary replicas. The client stores this 

information in a memory cache. That way, if the client needs to refer to the same replica later on, 

it can bypass the master server. If the primary replica becomes unavailable or the replica 

changes, the client will have to consult the master server again before contacting a chunkserver. 

The client then sends the write data to all the replicas, starting with the closest replica and ending 

with the furthest one. It doesn't matter if the closest replica is a primary or secondary. Google 

compares this data delivery method to a pipeline. 

Once the replicas receive the data, the primary replica begins to assign consecutive serial 

numbers to each change to the file. Changes are called mutations. The serial numbers instruct 

the replicas on how to order each mutation. The primary then applies the mutations in sequential 

order to its own data. Then it sends a write request to the secondary replicas, which follow the 

same application process. If everything works as it should, all the replicas across the cluster 

incorporate the new data. The secondary replicas report back to the primary once the application 

process is over. 

At that time, the primary replica reports back to the client. If the process was successful, it ends 

here. If not, the primary replica tells the client what happened. For example, if one secondary 

replica failed to update with a particular mutation, the primary replica notifies the client and 

retries the mutation application several more times. If the secondary replica doesn't update 

correctly, the primary replica tells the secondary replica to start over from the beginning of the 

write process. If that doesn't work, the master server will identify the affected replica as garbage. 

What About Big Files? 

If a client creates a write request that affects multiple chunks of a particularly large file, the GFS 

breaks the overall write request up into an individual request for each chunk. The rest of the 

process is the same as a normal write request. 

 



4. Other Google File System Functions 

Apart from the basic services the GFS provides, there are a few special functions that help keep 

the system running smoothly. While designing the system, the GFS developers knew that certain 

issues were bound to pop up based upon the system's architecture. They chose to use cheap 

hardware, which made building a large system a cost-effective process. It also meant that the 

individual computers in the system wouldn't always be reliable. The cheap price tag went hand-

in-hand with computers that have a tendency to fail. 

The GFS developers-built functions into the system to compensate for the inherent unreliability 

of individual components. Those functions include master and chunk replication, a streamlined 

recovery process, rebalancing, stale replica detection, garbage removal and checksumming. 

While there's only one active master server per GFS cluster, copies of the master server exist on 

other machines. Some copies, called shadow masters, provide limited services even when the 

primary master server is active. Those services are limited to read requests, since those requests 

don't alter data in any way. The shadow master servers always lag a little behind the primary 

master server, but it's usually only a matter of fractions of a second. The master server replicas 

maintain contact with the primary master server, monitoring the operation log and polling 

chunkservers to keep track of data. If the primary master server fails and cannot restart, a 

secondary master server can take its place. 

The GFS replicates chunks to ensure that data is available even if hardware fails. It stores 

replicas on different machines across different racks. That way, if an entire rack were to fail, the 

data would still exist in an accessible format on another machine. The GFS uses the unique 

chunk identifier to verify that each replica is valid. If one of the replica's handles doesn't match 

the chunk handle, the master server creates a new replica and assigns it to a chunkserver. 

The master server also monitors the cluster as a whole and periodically rebalances the workload 

by shifting chunks from one chunkserver to another. All chunkservers run at near capacity, but 

never at full capacity. The master server also monitors chunks and verifies that each replica is 

current. If a replica doesn't match the chunk's identification number, the master server designates 

it as a stale replica. The stale replica becomes garbage. After three days, the master server can 

delete a garbage chunk. This is a safety measure -- users can check on a garbage chunk before it 

is deleted permanently and prevent unwanted deletions. 

To prevent data corruption, the GFS uses a system called checksumming. The system breaks 

each 64 MB chunk into blocks of 64 kilobytes (KB). Each block within a chunk has its own 32-

bit checksum, which is sort of like a fingerprint. The master server monitors chunks by looking 

at the checksums. If the checksum of a replica doesn't match the checksum in the master server's 

memory, the master server deletes the replica and creates a new one to replace it. 

Heartbeats and Handshakes 
The GFS components give system updates through electronic messages called heartbeats and 

handshakes. These short messages allow the master server to stay current with each 

chunkserver's status. 



5. Google File System Hardware 

Google says little about the hardware it currently uses to run the GFS other than it's a collection 

of off-the-shelf, cheap Linux servers. But in an official GFS report, Google revealed the 

specifications of the equipment it used to run some benchmarking tests on GFS performance. 

While the test equipment might not be a true representation of the current GFS hardware, it gives 

you an idea of the sort of computers Google uses to handle the massive amounts of data it stores 

and manipulates. 

The test equipment included one master server, two master replicas, 16 clients and 16 

chunkservers. All of them used the same hardware with the same specifications, and they all ran 

on Linux operating systems. Each had dual 1.4 gigahertz Pentium III processors, 2 GB of 

memory and two 80 GB hard drives. In comparison, several vendors currently offer consumer 

PCs that are more than twice as powerful as the servers Google used in its tests. Google 

developers proved that the GFS could work efficiently using modest equipment. 

The network connecting the machines together consisted of a 100 megabytes-per-second (Mbps) 

full-duplex Ethernet connection and two Hewlett Packard 2524 network switches. The GFS 

developers connected the 16 client machines to one switch and the other 19 machines to another 

switch. They linked the two switches together with a one gigabyte-per-second (Gbps) 

connection. 

By lagging behind the leading edge of hardware technology, Google can purchase equipment 

and components at bargain prices. The structure of the GFS is such that it's easy to add more 

machines at any time. If a cluster begins to approach full capacity, Google can add more cheap 

hardware to the system and rebalance the workload. If a master server's memory is overtaxed, 

Google can upgrade the master server with more memory. The system is truly scalable. 

How did Google decide to use this system? Some credit Google's hiring policy. Google has a 

reputation for hiring computer science majors right out of graduate school and giving them the 

resources and space, they need to experiment with systems like the GFS. Others say it comes 

from a "do what you can with what you have" mentality that many computer system developers 

(including Google's founders) seem to possess. In the end, Google probably chose the GFS 

because it's geared to handle the kinds of processes that help the company pursue its stated goal 

of organizing the world's information. 

Bandwidth vs. Latency 

While bandwidth refers to a system's capacity for moving data from one location to another, 

latency refers to the delay between a system command and the corresponding response. In 

general, most system administrators strive for high bandwidth and low latency. Google 

developers are more concerned with bandwidth because Google applications manipulate very 

large files. 

 


