
A Book Chapter 

By Narendra Kumar Chahar

on Local and Shared Data, Parameters and Parameter Transmission

Index:

Chapter Chapter Name Page No.

9. Local and Shared Data, 
Parameters and Parameter 
Transmission

2 - 9

1



Chapter 9

Local and Shared Data, Parameters and Parameter Transmission

A. Parameter transmission

Subprograms need mechanisms to exchange data.

Arguments - data objects sent to a subprogram to be processed Obtained 
through

o parameters
o non-local references

Results - data object or values delivered by the subprogram Returned 
through

o parameters
o assignments to non-local variables
o explicit function values

6. Actual and Formal Parameters

A formal parameter is a particular kind of local data object within a 
subprogram.
It has a name, the declaration specifies its attributes.

An actual parameter is a data object that is shared with the caller 
subprogram.
Might be:

 a local data object belonging to the caller,
 a formal parameter of the caller,
 a nonlocal data object visible to the caller,
 a result returned by a function invoked by the caller and 

immediately transmitted to the called subprogram.

Establishing a Correspondence

Positional correspondence– pairing actual and formal 
parameters based on their respective positions in the actual- 
and formal- parameter lists.

Correspondence by explicit name– the name is paired 
explicitly by the caller.

2



7. Methods for transmitting parameters

Call by name– the actual parameter is substituted in the subprogram.

Call by reference– a pointer to the location of the data object is made
available to the subprogram. The data object does not change position
in memory.

Call by value– the value of the actual parameter is copied in the 
location of the formal parameter.

Call by value-result– same as call by value, however at the end of 
execution the result is copied into the actual parameter.

Call by constant value– if a parameter is transmitted by constant 
value, then no change in the value of the formal parameter is allowed 
during program execution.

Call by result– a parameter transmitted by result is used only to 
transmit a result back from a subprogram. The initial value of the 
actual-parameter data object makes no difference and cannot be used 
by the subprogram.

Note: Often "pass by" is used instead of "call by" .

Examples:

Pass by name in Algol Pass by reference in FORTRAN

Procedure S (el, k);

integer el, k;

begin

k:=2; el := 0

end;

SUBROUTINE S (EL, K)

K = 2

EL = 0

RETURN

END

A[1] := A[2] := 1;

i := 1;

S(A[i],i);

A(1) = A(2) = 1

I = 1

CALL S (A(I), I)

3



Pass by name:

After calling S(A[i],i), the effect is as if the procedure were

i := 2;

A[i] := 0;

As a result A[2] becomes 0.

On exit we have

i = 2, A[1] = 1, A[2] = 0.

Pass by reference:

Since at the time of call i is 1, the formal parameter el is 
linked to the address of A(1).

Thus it is A(1) that becomes 0.

On exit we have: i = 2, A(1) = 0, A(2) = 1

8. Transmission semantics

Types of parameters:

▪ input information

▪ output information (the result)

▪ both input and output

The three types can be accomplished by copying or using pass-by-
reference

Return results:

 Using parameters

 Using functions with a return value

4



9. Implementation of parameter transmission

Implementing formal parameters:

Storage - in the activation record
Type: Local data object of type T in case of pass by value, 
pass by value-result, pass by result
Local data object of type pointer to T in case of pass by 
reference

Call by name implementation: the formal parameters are subprograms
that evaluate the actual parameters.

Actions for parameter transmission:

 associated with the point of call of the subprogram

each actual parameter is evaluated in the referencing 
environment of the calling program, and list of 
pointers is set up.

 associated with the entry and exit in the subprogram

on entry:
copying the entire contents of the actual 
parameter in the formal parameter, or copying 
the pointer to the actual parameter

on exit:
copying result values into actual parameters
or copying function values into registers

These actions are performed by prologue and epilogue code generated
by the compiler and stored in the segment code part of the activation 
record of the subprogram.

Thus the compiler has two main tasks in the implementation of 
parameter transmission

▪ It must generate the correct executable code for transmission 
of parameters, return of results, and each reference to a 
formal-parameter name.

▪ It must perform the necessary static type checking to ensure 
that the type of each actual-parameter data object matches that
declared for the corresponding formal parameter

2. Explicit common environment

5



This method of sharing data objects is straightforward.

Specification: A common environment that is similar to a local environment,
however it is not a part of any single subprogram.

It may contain: definitions of variables, constants, types.
It cannot contain: subprograms, formal parameters.

Implementation:as a separate block of memory storage.

Special keywords are used to specify variables to be shared.

Shared Data Types:

The architectural framework must operate on pretty large grains in order to mitigate 

language primitive overheads and to exploit a significant efficiency in 

communications. Moreover, we must ensure that SDT typical access patterns exploit 

a good spatial locality.

As far as shared regions concern they are simply allocated in segments 

tailored for their size. The implementation of spread arrays has been extensively 

studied and tested in. We adopt the very simple strategy to divide them in regular 

segments. Such segments are spread across the architecture accordingly with a hash 

function12. Trees are more interesting from out viewpoint. We have already 

discussed how to declare and populate a spread tree in Chapter 5. In summary in 

order to use a spread tree the programmer should follow these steps:

1. Instance a spread tree SDT with a C type representing node held data. The 

operation is performed by means of the e declare tree.

2. Declare a spread tree shared variable using as type the name given to the 

SDT at the previous step (either statically or dynamically via standard 

malloc). This phase declares an empty tree.

3. Populate the tree starting from the root using the e add node primitive.

Let us describe now what really happens in the run-time support:

1. Two new types are created. One of them represent the tree, the other its 

generic node. Both of them are really are C struct. The former type is named 

according to the SDT requested name. It hold few information such as the 

number of children and a dummy variable holding a prototype of the generic 

6



node. The latter struct holds the C type used as parameter and some

additional information such as an array of references to children.

2. Nothing happens apart for the allocation of the first struct mentioned above.

3. Starting from the reference to the father the run-time decides if the requested 

child must be placed in the same segment or in a new one. This decision is 

made according to the mapping policy. Clearly if the father is null a new 

segment is created (and the node is the root of the tree).

 In the case the child is placed in the father’s segment it inherits father 

segment id. The run-time choose only node displacement within the segment 

according to the “internal” mapping policy (heap, first-fit). Some information

are kept within the segment to trace segment current status.

 In the case the child is placed in a new segment a segment id is requested and

a suitable memory room is allocated (via malloc). Then the previous step is 

performed to figure out the displacement.

In both cases a reference is composed by using segment id and displacement then 

returned.

Semaphores

• Dijkstra - 1965

• A semaphore is a data structure consisting of a counter and a queue for storing task 

descriptors.

• Semaphores can be used to implement guards on the code that accesses shared data 

structures.

• Semaphores have only two operations, wait and release (originally called P and V 

by Dijkstra).

• Semaphores can be used to provide both competition and cooperation 

Synchronization.

Cooperation Synchronization with Semaphores

7



• Example: A shared buffer

• The buffer is implemented as an ADT with the operations DEPOSIT and FETCH 

as the only ways to access the buffer.

• Use two semaphores for cooperation: empty spots and full spots.

• The semaphore counters are used to store the numbers of empty spots and full spots

in the buffer.

• DEPOSIT must first check empty spots to see if there is room in the buffer.

• If there is room, the counter of empty spots is decremented and the value is 

inserted.

• If there is no room, the caller is stored in the queue of empty spots.

• When DEPOSIT is finished, it must increment the counter of full spots.

• FETCH must first check full spots to see if there is a value.

– If there is a full spot, the counter of fulls pots is decremented and the value 

is removed.

– If there are no values in the buffer, the caller must be placed in the queue of

full spots.

– When FETCH is finished, it increments the counter of empty spots.

• The operations of FETCH and DEPOSIT on the semaphores are accomplished 

through two semaphore operations named wait and release.

Semaphores: Wait Operation

wait(a Semaphore)

if a Semaphore‘s counter > 0 then

decrement a Semaphore‘s counter

else

put the caller in a Semaphore‘s queue

attempt to transfer control to a ready task

-- if the task ready queue is empty,

-- deadlock occurs

end

Semaphores: Release Operation

release(a Semaphore)

if a Semaphore‘s queue is empty then increment a Semaphore‘s counter

8



else

put the calling task in the task ready queue transfer control to a task from a 

Semaphore‘s queue

end

Producer Consumer Code

semaphore fullspots, emptyspots;

fullstops.count = 0;

emptyspots.count = BUFLEN;

task producer;

loop

-- produce VALUE –-

wait (emptyspots); {wait for space}

DEPOSIT(VALUE);

release(fullspots); {increase filled}

end loop;

end producer;

References:

[1]. Domke, J. (2011, June). Parameter learning with truncated message-passing. In CVPR 

2011 (pp. 2937-2943). IEEE.

[2]. Gleeson, J. P., & Porter, M. A. (2018). Message-passing methods for complex 

contagions. In Complex Spreading Phenomena in Social Systems (pp. 81-95). Springer, 

Cham.

[3]. Accattoli, B., & Guerrieri, G. (2016, November). Open call-by-value. In Asian 

Symposium on Programming Languages and Systems (pp. 206-226). Springer, Cham.

[4]. Šinkarovs, A., Scholz, S. B., Stewart, R., & Vießmann, H. N. (2017, August). Recursive

Array Comprehensions in a Call-by-Value Language. In Proceedings of the 29th Symposium

on the Implementation and Application of Functional Programming Languages (pp. 1-12).

[5]. Ray, B., Posnett, D., Filkov, V., & Devanbu, P. (2014, November). A large scale study 

of programming languages and code quality in github. In Proceedings of the 22nd ACM 

SIGSOFT international symposium on foundations of software engineering (pp. 155-165).

[6]. Hansen, P. B. (Ed.). (2013). The origin of concurrent programming: from semaphores 

to remote procedure calls. Springer Science & Business Media.

[7]. Erciyes, K. (2019). Real-Time Programming Languages. In Distributed Real-Time 

9



Systems (pp. 251-275). Springer, Cham.

10


