
A Book Chapter

By Narendra Kumar Chahar

on Static and Dynamic Scope, Block Structure

Index:

Chapter Chapter Name Page No.

8. Static and Dynamic scope,

Block structure

2 - 8

1

Chapter 8

Static and Dynamic scope

Scope is an important concept in programming languages – one cannot read or write

large programs without properly understanding the concept of scope. The scope of a

variable in a program is the lines of code in the program where the variable can be

accessed.

// start pseudo-code

var y = "global";
function print-y() {

 print(y);
}

function test-scope() {
 var y = "local";

 print-y();
}

test-scope(); // statically scoped languages print "global"
 // dynamically languages print "local"

print-y(); // all languages should print "global"

// end pseudo-code

2

This is the standard type of example used to explain what static scoping is as

compared to dynamic scoping. This makes sense to me, but never really sank in.

To anyone who already gets this, this will seem trivial. But the lightbulb went off for

me when I thought about static vs dynamic typing…

In a dynamically typed language (like ruby, javascript, etc), types are not checked

until execution. If an expression evaluates, then the type-checking worked. If not, it

blows up to your error handling or the user. Statically typed languages check types at

compile time. The programmer ensures that parameter types are specified and the

compiler ensures the programmer’s wishes will be followed.

Thinking in this fashion, static/dynamic scoping makes sense. For the following

explanation, pretend that variables only have one type of storage for simplicity, and

that global y is at memory location x01, while local y in test-scope is at x02.

If I’m a compiler in the act of compiling print-y (above code snippet) in a static

language, then I know the scope I’m running in (hence static scope). I know that y is

bound to the global variable, and I can replace that y with a direct location of x01 in

the assembly I’m generating. No lookup tables, etc… fast.

If instead, I’m compiling print-y in a dynamic scope, then I can make no such

substitution. I’m going to make some calls to print-y that will point to x01 and others

that point to x02. What y is bound to be determined by the scope of the call at

runtime… which is the definition of dynamic scoping?

So that might help it click. Everything said about a stack in dynamic scoping is true,

but I think it’s easier to understand that once you understand the above. Then you

realize I could nest 4 or 5 of those calls and the last value of y would win.

3

Block Structure:

First the terminology used in the paper will be described. This includes the

programming language notation used for describing the examples. Next the role of

block structure will be discussed and finally we shall comment on some of the

discussion of block structure in the literature.

In this paper block structure means textually nested procedures, classes and

blocks as in Simula and Beta. The term object will be used as a common name for

instances of procedures, classes and blocks.

By block is meant the Algol-60 type of statement. A block-activation is an

instance of a block and covered by the term object.

The language used for describing the examples is restricted to a minimum.

The following syntax is used:

<program> : : = <object-description>

<class-declaration> : : = <name> : class <object-description>

<procedure-declaration> : : = <name> :proc <formal-parameters> <object-

description>

<formal-parameters> :: = (<input-parameters>) + (<output-parameters>)

<variable-declaration> : : = <name-list> : <object-specification>

<object-specification> : : = <class-name> 1 <object-description>

<object-description> : : = <super-class> begin <declaration-list> do <imperative-

list> end

<super-class> :: = <class-name> 1 empty

<imperative> : : = <procedure-activation>

<object-description>

<variable-name> : = <expression>

A class-declaration and a corresponding variable-declaration may then appear

as in the following program. Comments are enclosed by (and } .

4

begin

C :class S {S is the superclass of C}

begin (C-objects have 3 attributes}

Al : D; {Al is an instance of class D}

P :proc (X : integer, Y : boolean) + (2 : integer);

begin {I? is a procedure attribute}

{with two input parameters, X,Y}

{and one output parameter, Z.>

(X,Y, Z are themselves instance of classes)

end ;

T : class . . . (T is a class-attribute)

do I {I is an imperative that may be executed}

end ;

a : C; (a is an instance of class C, a C-object}

do . . .

end

In the example language variables have a type in the form of a class name.

This means that the variable will denote an instance of that class or one of its

subclasses. This is the same as in Simula. The generation time of objects has not

been defined. An object may be generated together with the object containing the

variable. Or objects may be generated by executing a new-imperative (like in Simula

and Smalltalk). Both possibilities exist in Beta.

The example language also includes so-called singular objects, which are

objects described directly without referring to a class or procedure:

begin {Bl}

F’ : begin { B2) I : integer end ;

do V.1 : = 7;

begin (B3)

X : integer

doX : = V.1; . . .

end ;

end

5

The whole program is a singular object described by Bl. The variable V is a

singular object described by B2. B3 is a singular object describing an imperative in

the form of an Algol-60 like block.

Most of the examples in this paper may (except for syntax) be expressed in

the Beta programming language. Constructs not available in Beta are explicitly

mentioned, some real or imaginary system, called the referent-system ([Delta]). In

order to create a model of the referent-system concepts covering the relevant

phenomena must be developed.

For a concept we shall use the classic terms which are: the name used to

denote the concept, the intension: the properties of the phenomena covered by the

concept, and the extension: the set of phenomena covered by the concept.

The model system (or program execution) contains elements corresponding

to the phenomena and concepts selected as important for the desired perspective on

the referent-system. Classes and procedures model concepts and objects model

phenomena.

Abstraction mechanisms in programming languages are important. Most

object oriented programming languages support the three fundamental sub functions

of abstraction: classification, aggregation and generalization. The inverse functions

exemplification, decomposition and specialization are similarly supported.

A class definition is a description of the intension of the instances (extension) of the

class. This description includes: one or more superclasses specifying which

classes/concepts that the new class specializes, a set of attributes characterizing

instances of the new class, and an imperative-list that describes an action-sequence

associated with instances of the class.

The attributes of a class/procedure may be described by referring to other

classes/procedures, i.e. aggregation is taking place. The attributes may describe

components that are a fixed part of the surrounding object, or components which are

references to objects. Here block-structure or locality is important: Locality makes it

possible to describe that an object is character by a concept in the form of a local

6

class or procedure. This restricts the existence of instances of such local classes or

procedures to the lifetime of the enclosing object in which they are defined. In the

remaining sections of this paper a number of examples of this will be given.

Block structure is not a mechanism for “programming in the large” in the

sense that a program should be structured as a large program consisting of nested

procedures and classes. A programming language must contain facilities for

modularizing a program into minor parts. Especially aggregation should be

supported by a construct like the Ada package allowing another hierarchy than block

structure. In [BETA 83a] a language independent mechanism for program

modularization is described.

A concept/abstraction is timeless in the sense that it has no state that changes

over time. Since classes are used to model concepts, classes should not have state.

An object is a phenomenon which has a state that may change over time. Objects

may have the samefom, i.e. belong to the same class; but they have different

substance. This means that they have a different location in terms of coordinates and

time. Examples af objects are people, furniture, etc.

There are however phenomena which do not have substance ([Delta],[Beta]).

A process (a partially ordered set of events) is an example of a phenomenon

appearing in a program execution. The concepts covering such phenomena are

typically modelled by procedures or concurrent process descriptions.

Values and types in programming languages model concepts where the

phenomena are measurable properties of objects, i.e. the substance.

7

Discussion of Block Structure

There are many aspects of block structure being discussed in the literature.

Here we shall comment on this discussion.

Locality: The major advantage of block structure is locality. This makes it possible

to restrict the existence of an object and its description to the environment (object)

where it has meaning.

Scope rules: There are (at least) the following aspects of scope rules for names

declared within an object:

1. They only exist when the object exist. This is a consequence of locality.

2. Access to global names and redeclaration of names.

References:

[1]. Harper, R. (2016). Practical foundations for programming languages. Cambridge

University Press.

[2]. Fernandes, E., & Kumar, A. N. (2004, March). A tutor on scope for the programming

languages course. In Proceedings of the 35th SIGCSE technical symposium on Computer

science education (pp. 90-93).

[3]. Scott, M. L. (2000). Programming language pragmatics. Morgan Kaufmann.

[4]. Meijer, E., & Drayton, P. (2004, October). Static typing where possible, dynamic typing

when needed: The end of the cold war between programming languages. OOPSLA.

[5]. Madsen, O. L. (1986, June). Block structure and object oriented languages. In

Proceedings of the 1986 SIGPLAN workshop on Object-oriented programming (pp. 133-

142).

[6]. Ferrari, A., Poggi, A., & Tomaiuolo, M. (2016). Object oriented puzzle programming.

Mondo Digitale, 15, 64.

[7]. Batteux, M., Prosvirnova, T., & Rauzy, A. (2018, October). From models of structures

to structures of models. In 2018 IEEE International Systems Engineering Symposium (ISSE)

(pp. 1-7). IEEE.

8

