
1

A Book Chapter

By Narendra Kumar Chahar

on Programming Languages

Index:

Chapter Chapter Name Page No.

1. Programming languages 2-12

2.

3.

2

Chapter 1

Programming Languages

A programming language is an artificial language designed to

communicate instructions to a machine, particularly a computer. Programming

languages can be used to create programs that control the behavior of a machine

and/or to express algorithms precisely.

The earliest programming languages predate the invention of the computer, and were

used to direct the behavior of machines such as Jacquard loomsand player

pianos[citation needed]. Thousands of different programming languages have been

created, mainly in the computer field, with many being created every year. Most

programming languages describe computation in an imperative style, i.e., as a

sequence of commands, although some languages, such as those that

support functional programming or logic programming, use alternative forms of

description.

The description of a programming language is usually split into the two components

of syntax (form) and semantics (meaning). Some languages are defined by a

specification document (for example, the C programming language is specified by

an ISO Standard), while other languages, such as Perl 5 and earlier, have a dominant

implementation that is used as a reference.

History of programming languages:

The first programming languages predate the modern computer. At first, the

languages were codes.

The Jacquard loom, invented in 1801, used holes in punched cards to represent

sewing loom arm movements in order to generate decorative patterns automatically.

During a nine-month period in 1842-1843, Ada Lovelace translated the memoir of

Italian mathematician Luigi Menabrea about Charles Babbage's newest proposed

machine, theAnalytical Engine. With the article, she appended a set of notes which

specified in complete detail a method for calculating Bernoulli numbers with the

Engine, recognized by some historians as the world's first computer program.[1]

Herman Hollerith realized that he could encode information on punch cards when he

observed that train conductors encode the appearance of the ticket holders on the

train tickets using the position of punched holes on the tickets. Hollerith then

encoded the 1890 census data on punch cards.

The first computer codes were specialized for their applications. In the first decades

of the 20th century, numerical calculations were based on decimal numbers.

http://en.wikipedia.org/wiki/Formal_language
http://en.wikipedia.org/wiki/Machine_instruction
http://en.wikipedia.org/wiki/Machine
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Program_(machine)
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/History_of_computing_hardware
http://en.wikipedia.org/wiki/Jacquard_loom
http://en.wikipedia.org/wiki/Player_piano
http://en.wikipedia.org/wiki/Player_piano
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Imperative_programming
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Logic_programming
http://en.wikipedia.org/wiki/Syntax_(programming_languages)
http://en.wikipedia.org/wiki/Semantics
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/Programming_language_implementation
http://en.wikipedia.org/wiki/Reference_implementation
http://en.wikipedia.org/wiki/Code
http://en.wikipedia.org/wiki/Jacquard_loom
http://en.wikipedia.org/wiki/Ada_Lovelace
http://en.wikipedia.org/wiki/Charles_Babbage
http://en.wikipedia.org/wiki/Analytical_engine
http://en.wikipedia.org/wiki/Bernoulli_number
http://en.wikipedia.org/wiki/History_of_programming_languages#cite_note-1
http://en.wikipedia.org/wiki/Herman_Hollerith
http://en.wikipedia.org/wiki/Punched_card
http://en.wikipedia.org/wiki/Train
http://en.wikipedia.org/wiki/Conductor_(transportation)

3

Eventually it was realized that logic could be represented with numbers, not only

with words. For example, Alonzo Church was able to express the lambda calculus in

a formulaic way. The Turing machine was an abstraction of the operation of a tape-

marking machine, for example, in use at the telephone companies. Turing machines

set the basis for storage of programs as data in the von Neumann architecture of

computers by representing a machine through a finite number. However, unlike the

lambda calculus, Turing's code does not serve well as a basis for higher-level

languages—its principal use is in rigorous analyses of algorithmic complexity.

Like many "firsts" in history, the first modern programming language is hard to

identify. From the start, the restrictions of the hardware defined the language. Punch

cards allowed 80 columns, but some of the columns had to be used for a sorting

number on each card. FORTRAN included some keywords which were the same as

English words, such as "IF", "GOTO" (go to) and "CONTINUE". The use of a

magnetic drum for memory meant that computer programs also had to be interleaved

with the rotations of the drum. Thus the programs were more hardware-dependent.

To some people, what was the first modern programming language depends on how

much power and human-readability is required before the status of "programming

language" is granted. Jacquard looms and Charles Babbage's Difference Engine both

had simple, extremely limited languages for describing the actions that these

machines should perform. One can even regard the punch holes on a player

piano scroll as a limited domain-specific language, albeit not designed for human

consumption.

The 1940s

In the 1940s, the first recognizably modern, electrically powered computers were

created. The limited speed and memory capacity forced programmers to write hand

tunedassembly language programs. It was eventually realized that programming in

assembly language required a great deal of intellectual effort and was error-prone.

In 1948, Konrad Zuse published a paper about his programming

language Plankalkül. However, it was not implemented in his lifetime and his

original contributions were isolated from other developments.

Some important languages that were developed in this period include:

• 1943 - Plankalkül (Konrad Zuse), designed, but unimplemented for a half-century

• 1943 - ENIAC, Electric Numerical Integrator And Computer, machine-specific

codeset appearing in 1948.[2]

• 1949 - 1954 — a series of machine-specific mnemonic instruction sets, like

ENIAC's, beginning in 1949 with C-10 for BINAC (which later evolved into

UNIVAC).[3] Each codeset, or instruction set, was tailored to a specific

manufacturer.

[edit]The 1950s and 1960s

In the 1950s, the first three modern programming languages whose descendants are

http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Von_Neumann_architecture#_blank
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Difference_engine
http://en.wikipedia.org/wiki/Player_piano
http://en.wikipedia.org/wiki/Player_piano
http://en.wikipedia.org/wiki/Domain-specific_language
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Konrad_Zuse
http://en.wikipedia.org/wiki/Plankalkül
http://en.wikipedia.org/wiki/Plankalkül
http://en.wikipedia.org/wiki/ENIAC
http://en.wikipedia.org/wiki/History_of_programming_languages#cite_note-2
http://en.wikipedia.org/wiki/History_of_programming_languages#cite_note-3
http://en.wikipedia.org/w/index.php?title=History_of_programming_languages&action=edit§ion=3

4

still in widespread use today were designed:

• FORTRAN (1955), the "FORmula TRANslator", invented by John Backus et al.;

• LISP (1958), the "LISt Processor", invented by John McCarthy et al.;

• COBOL,(1959) the COmmon Business Oriented Language, created by the Short-

Range Committee, heavily influenced by Grace Hopper.

Another milestone in the late 1950s was the publication, by a committee of

American and European computer scientists, of "a new language for algorithms";

the ALGOL 60 Report (the "ALGOrithmic Language"). This report consolidated

many ideas circulating at the time and featured two key language innovations:

• nested block structure: code sequences and associated declarations could be grouped

into blocks without having to be turned into separate, explicitly named procedures;

• lexical scoping: a block could have its own private variables, procedures and

functions, invisible to code outside that block, i.e., information hiding.

Another innovation, related to this, was in how the language was described:

• a mathematically exact notation, Backus-Naur Form (BNF), was used to describe the

language's syntax. Nearly all subsequent programming languages have used a variant

of BNF to describe the context-free portion of their syntax.

Algol 60 was particularly influential in the design of later languages, some of which

soon became more popular. The Burroughs large systems were designed to be

programmed in an extended subset of Algol.

Algol's key ideas were continued, producing ALGOL 68:

• syntax and semantics became even more orthogonal, with anonymous routines, a

recursive typing system with higher-order functions, etc.;

• not only the context-free part, but the full language syntax and semantics were

defined formally, in terms of Van Wijngaarden grammar, a formalism designed

specifically for this purpose.

Algol 68's many little-used language features (e.g. concurrent and parallel blocks)

and its complex system of syntactic shortcuts and automatic type coercions made it

unpopular with implementers and gained it a reputation of being difficult. Niklaus

Wirth actually walked out of the design committee to create the

simpler Pascal language.

Some important languages that were developed in this period include:

• 1951 - Regional Assembly Language

• 1952 - Autocode

• 1954 - IPL (forerunner to LISP)

• 1955 - FLOW-MATIC (forerunner to COBOL)

• 1957 - FORTRAN (First compiler)

• 1957 - COMTRAN (forerunner to COBOL)

http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/John_Backus
http://en.wikipedia.org/wiki/Lisp_(programming_language)
http://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)
http://en.wikipedia.org/wiki/COBOL
http://en.wikipedia.org/wiki/Grace_Hopper
http://en.wikipedia.org/wiki/ALGOL
http://en.wikipedia.org/wiki/Block_(programming)
http://en.wikipedia.org/wiki/Scope_(programming)
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/wiki/Backus-Naur_Form
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Burroughs_large_systems
http://en.wikipedia.org/wiki/ALGOL_68
http://en.wikipedia.org/wiki/Van_Wijngaarden_grammar
http://en.wikipedia.org/wiki/Niklaus_Wirth
http://en.wikipedia.org/wiki/Niklaus_Wirth
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://en.wikipedia.org/w/index.php?title=Regional_Assembly_Language&action=edit&redlink=1
http://en.wikipedia.org/wiki/Autocode
http://en.wikipedia.org/wiki/Information_Processing_Language
http://en.wikipedia.org/wiki/FLOW-MATIC
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/COMTRAN

5

• 1958 - LISP

• 1958 - ALGOL 58

• 1959 - FACT (forerunner to COBOL)

• 1959 - COBOL

• 1959 - RPG

• 1962 - APL

• 1962 - Simula

• 1962 - SNOBOL

• 1963 - CPL (forerunner to C)

• 1964 - BASIC

• 1964 - PL/I

• 1967 - BCPL (forerunner to C)

1968-1979: establishing fundamental paradigms

The period from the late 1960s to the late 1970s brought a major flowering of

programming languages. Most of the major language paradigms now in use were

invented in this period:

• Simula, invented in the late 1960s by Nygaard and Dahl as a superset of Algol 60,

was the first language designed to support object-oriented programming.

• C, an early systems programming language, was developed by Dennis

Ritchie and Ken Thompson at Bell Labs between 1969 and 1973.

• Smalltalk (mid 1970s) provided a complete ground-up design of an object-oriented

language.

• Prolog, designed in 1972 by Colmerauer, Roussel, and Kowalski, was the first logic

programming language.

• ML built a polymorphic type system (invented by Robin Milner in 1973) on top of

Lisp, pioneering statically typed functional programming languages.

Each of these languages spawned an entire family of descendants, and most modern

languages count at least one of them in their ancestry.

The 1960s and 1970s also saw considerable debate over the merits of "structured

programming", which essentially meant programming without the use of Goto. This

debate was closely related to language design: some languages did not include

GOTO, which forced structured programming on the programmer. Although the

debate raged hotly at the time, nearly all programmers now agree that, even in

languages that provide GOTO, it is bad programming style to use it except in rare

circumstances. As a result, later generations of language designers have found the

structured programming debate tedious and even bewildering.

Some important languages that were developed in this period include:

• 1968 - Logo

• 1969 - B (forerunner to C)

• 1970 - Pascal

• 1970 - Forth

http://en.wikipedia.org/wiki/Lisp_(programming_language)
http://en.wikipedia.org/wiki/ALGOL_58
http://en.wikipedia.org/wiki/FACT_computer_language
http://en.wikipedia.org/wiki/COBOL
http://en.wikipedia.org/wiki/IBM_RPG
http://en.wikipedia.org/wiki/APL_(programming_language)
http://en.wikipedia.org/wiki/Simula
http://en.wikipedia.org/wiki/SNOBOL
http://en.wikipedia.org/wiki/Combined_Programming_Language
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/PL/I
http://en.wikipedia.org/wiki/BCPL
http://en.wikipedia.org/wiki/Simula
http://en.wikipedia.org/wiki/Kristen_Nygaard
http://en.wikipedia.org/wiki/Ole-Johan_Dahl
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/System_programming
http://en.wikipedia.org/wiki/Dennis_Ritchie
http://en.wikipedia.org/wiki/Dennis_Ritchie
http://en.wikipedia.org/wiki/Ken_Thompson
http://en.wikipedia.org/wiki/Bell_Labs
http://en.wikipedia.org/wiki/Smalltalk
http://en.wikipedia.org/wiki/Prolog
http://en.wikipedia.org/wiki/Alain_Colmerauer
http://en.wikipedia.org/w/index.php?title=Phillipe_Roussel&action=edit&redlink=1
http://en.wikipedia.org/wiki/Robert_Kowalski
http://en.wikipedia.org/wiki/Logic_programming
http://en.wikipedia.org/wiki/Logic_programming
http://en.wikipedia.org/wiki/ML_(programming_language)
http://en.wikipedia.org/wiki/Robin_Milner
http://en.wikipedia.org/wiki/Type_system
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Structured_programming
http://en.wikipedia.org/wiki/Structured_programming
http://en.wikipedia.org/wiki/Goto
http://en.wikipedia.org/wiki/Programming_style
http://en.wikipedia.org/wiki/Logo_(programming_language)
http://en.wikipedia.org/wiki/B_(programming_language)
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://en.wikipedia.org/wiki/Forth_(programming_language)

6

• 1972 - C

• 1972 - Smalltalk

• 1972 - Prolog

• 1973 - ML

• 1975 - Scheme

• 1978 - SQL (initially only a query language, later extended with programming

constructs)

The 1980s: consolidation, modules, performance

The 1980s were years of relative consolidation in imperative languages. Rather than

inventing new paradigms, all of these movements elaborated upon the ideas invented

in the previous decade. C++ combined object-oriented and systems programming.

The United States government standardized Ada, a systems programming language

intended for use by defense contractors. In Japan and elsewhere, vast sums were

spent investigating so-called fifth-generation programming languages that

incorporated logic programming constructs. The functional languages community

moved to standardize ML and Lisp. Research in Miranda, a functional language

with lazy evaluation, began to take hold in this decade.

One important new trend in language design was an increased focus on programming

for large-scale systems through the use of modules, or large-scale organizational

units of code. Modula, Ada, and ML all developed notable module systems in the

1980s. Module systems were often wedded to generic programming constructs---

generics being, in essence, parametrized modules (see also polymorphism in object-

oriented programming).

Although major new paradigms for imperative programming languages did not

appear, many researchers expanded on the ideas of prior languages and adapted them

to new contexts. For example, the languages of the Argus and Emerald systems

adapted object-oriented programming to distributed systems.

The 1980s also brought advances in programming language implementation.

The RISC movement in computer architecture postulated that hardware should be

designed for compilers rather than for human assembly programmers. Aided

by processor speed improvements that enabled increasingly aggressive compilation

techniques, the RISC movement sparked greater interest in compilation technology

for high-level languages.

Language technology continued along these lines well into the 1990s.

Some important languages that were developed in this period include:

• 1980 - C++ (as C with classes, name changed in July 1983)

• 1983 - Ada

• 1984 - Common Lisp

• 1984 - MATLAB

• 1985 - Eiffel

• 1986 - Objective-C

http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Smalltalk
http://en.wikipedia.org/wiki/Prolog
http://en.wikipedia.org/wiki/ML_(programming_language)
http://en.wikipedia.org/wiki/Scheme_(programming_language)
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Imperative_language
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Ada_(programming_language)
http://en.wikipedia.org/wiki/Fifth-generation_programming_language
http://en.wikipedia.org/wiki/Miranda_(programming_language)
http://en.wikipedia.org/wiki/Lazy_evaluation
http://en.wikipedia.org/wiki/Modula
http://en.wikipedia.org/wiki/Generic_programming
http://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming
http://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming
http://en.wikipedia.org/wiki/Argus_(computer_system)
http://en.wikipedia.org/w/index.php?title=Emerald_(computer_system)&action=edit&redlink=1
http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Reduced_instruction_set_computer
http://en.wikipedia.org/wiki/Computer_architecture
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/C_with_classes
http://en.wikipedia.org/wiki/Ada_(programming_language)
http://en.wikipedia.org/wiki/Common_Lisp
http://en.wikipedia.org/wiki/MATLAB
http://en.wikipedia.org/wiki/Eiffel_(programming_language)
http://en.wikipedia.org/wiki/Objective-C

7

• 1986 - Erlang

• 1987 - Perl

• 1988 - Tcl

• 1988 - Mathematica

• 1989 - FL (Backus);

The 1990s: the Internet age

The rapid growth of the Internet in the mid-1990s was the next major historic event

in programming languages. By opening up a radically new platform for computer

systems, the Internet created an opportunity for new languages to be adopted. In

particular, the Java programming language rose to popularity because of its early

integration with the Netscape Navigator web browser, and various scripting

languages achieved widespread use in developing customized application for web

servers. The 1990s saw no fundamental novelty inimperative languages, but much

recombination and maturation of old ideas. This era began the spread of functional

languages. A big driving philosophy was programmer productivity. Many "rapid

application development" (RAD) languages emerged, which usually came with

an IDE, garbage collection, and were descendants of older languages. All such

languages were object-oriented. These included Object Pascal, Visual Basic,

and Java. Java in particular received much attention. More radical and innovative

than the RAD languages were the new scripting languages. These did not directly

descend from other languages and featured new syntaxes and more liberal

incorporation of features. Many consider these scripting languages to be more

productive than even the RAD languages, but often because of choices that make

small programs simpler but large programs more difficult to write and

maintain.[citation needed] Nevertheless, scripting languages came to be the most

prominent ones used in connection with the Web.

Some important languages that were developed in this period include:

• 1990 - Haskell

• 1991 - Python

• 1991 - Visual Basic

• 1991 - HTML (Mark-up Language)

• 1993 - Ruby

• 1993 - Lua

• 1994 - CLOS (part of ANSI Common Lisp)

• 1995 - Java

• 1995 - Delphi (Object Pascal)

• 1995 - JavaScript

• 1995 - PHP

• 1996 - WebDNA

• 1997 - Rebol

• 1999 - D

http://en.wikipedia.org/wiki/Erlang_(programming_language)
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/Mathematica
http://en.wikipedia.org/wiki/FL_(programming_language)
http://en.wikipedia.org/wiki/Imperative_language
http://en.wikipedia.org/wiki/Functional_language
http://en.wikipedia.org/wiki/Functional_language
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object_Pascal
http://en.wikipedia.org/wiki/Visual_Basic
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Scripting_language
http://en.wikipedia.org/wiki/Wikipedia:Citation_needed
http://en.wikipedia.org/wiki/Haskell_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Visual_Basic
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/Ruby_(programming_language)
http://en.wikipedia.org/wiki/Lua_(programming_language)
http://en.wikipedia.org/wiki/CLOS
http://en.wikipedia.org/wiki/Common_Lisp
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Embarcadero_Delphi
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/WebDNA
http://en.wikipedia.org/wiki/REBOL
http://en.wikipedia.org/wiki/D_(programming_language)

8

Features of programming Languages:

• The vocabulary of the language should resemble English (or some other human

language). Symbols, abbreviations, and jargon should be avoided unless they're

already familiar to most people.

• Programs should consist mostly of instructions; tedious declarations should be kept

to a minimum.

• The language and its class or function library should be fully documented. Source

code, even if provided, is no substitute for documentation. At least for beginners and

part-timers, a page of documentation is far more intelligible than a page of source

code. Any function will generally invoke a number of other functions, and therefore

the source code is completely unintelligible unless you already know what every

function does.

• There should be no need to manipulate pointers explicitly, and no means of doing

so. Pointers are tedious to deal with and they're a fruitful source of bugs; they should

be managed by the language and not by the programmer. This approach has been

tried and shown to be feasible in a number of languages.

• The language should provide arrays of unlimited size: there should be no need to

declare array bounds. Sorting facilities should be included as standard; we shouldn't

have to write our own sort routines.

• Integers of unlimited size (as in Smalltalk) are nice to have in principle, though in

practice not urgently needed for most programs.

• The language should provide full facilities for handling a graphical user interface.

These should be defined as a standard part of the language, irrespective of the

operating system in use. Algol-60 was a failure in practice because it failed to define

input/output as a part of the language, and therefore its input/output statements

varied from one implementation to another. Input/output now includes the graphical

user interface, and any programming language should take responsibility for it.

• The language should probably be object-oriented. However, I've never actually

written a pure object-oriented program, so I say this with more faith than experience.

• In Smalltalk, everything you write yourself is included in the "image file" and

effectively becomes part of the language from then on. I dislike this approach: I

prefer to keep one project separate from another and my projects separate from the

libraries supplied with the language. When I create classes that I want to use in more

than one project, I should be able to put them in a Personal Library folder or

something.

9

• Any concept that can't easily be explained to children probably shouldn't be

included in the language. Part-time programmers don't want to struggle with difficult

concepts, they just want to get a job done quickly and easily.

Programming Paradigms:

There are four basic computational models that describe most programming today,

Imperative, applicative, rule based and object oriented.

Imperative: The language provides statements, such as assignment statements,

which explicitly change the state of the memory of the computer.

Functional: In this paradigm we express computations as the evaluation of

mathematical functions.

Logic: In this paradigm we express computation in exclusively in terms

of mathematical logic

Object-Oriented: In this paradigm we associate behaviour with data-structures

called “objects” which belong to classes which are usually structured into a

hierarchy.

The paradigms are not exclusive, but reflect the different emphasis of language

designers. Most practical imperative, functional and object-oriented languages

embody features of more than one paradigm.

The Functional Paradigm

In this we emphasise the idea of computation as being about evaluating

mathematical functions combined in expressions. While all languages try to provide

a representation of basic functions like addition, functional languages support a

functional way of expressing computations on large and complex structures,

although some such as Scheme also have imperative features. In a pure functional

language, a mathematical identity like:

 fred(x) + fred(x) = 2*fred(x)

should hold. This is not necessarily the case for a non-functional language, for

example in Pascal or C fred might be a procedure which had a side-effect, so that

calling it twice has a different effect from calling it once. For example fred might

contain the assignment g := g+1 where g is a global variable. The primary motivation

of writing functionally is to develop programs whose behaviour can easily be

analysed mathematically, and in any case is easy to predict and understand.

The same non-functional aspect holds also for Java. A method call fred(x) will

commonly have a side-effect.

However it has been difficult to design languages under the functional paradigm

which produce programs which run as fast as under the imperative paradigm. With

the high performance of modern computers, this matters less for many applications

10

than the ability to write correct programs. The functional paradigm is hard to

implement efficiently because if a storage location is once used to hold a value it is

not obvious when it can be re-used - a computer running a program using the

functional paradigm can spend a lot of effort determining the reusability of store.

Another way to think of the functional paradigm is to regard it as a way of taking to

its limit the advice to avoid harmful side-effects in a program.

The Imperative Paradigm

Languages which reflect this paradigm recognise the fact computers have re-usable

memory that can change state. So they are characterised by statements, which affect

the state of the machine, for example.

 x := x+1

This can only be understood mathematically by associating a sequence of values

with x let us say x1, x2,..., where xt denotes the value the variable x has at some

time t. Thus the above statement can be translated into mathematics as

xt+1 = xt + 1

This kind of reasoning is discussed in CS250. It gets increasingly hard to do as the

state-changes get ever more complex (e.g. by assigning to data-structure

components). However imperative languages can relatively easily be translated into

efficient machine-code, and so are usually considered to be highly efficient. Many

people also find the imperative paradigm to be a more natural way of expressing

themselves.

Languages which use the imperative paradigm commonly have functional features -

for example the basic functions of arithmetic (addition, subtraction...) are provided.

The Logic Paradigm(Rule based)

While the functional paradigm emphasises the idea of a mathematical function, the

logic paradigm focusses on predicate logic, in which the basic concept is a relation.

Logic languages are useful for expressing problems where it is not obvious what the

functions should be. Thus, for example where people are concerned, it is natural to

use relations.

For example consider the uncle relationship: a given person can have many uncles,

and a another person can be uncle to many nieces and nephews.

Let us consider now how we can define the brother relation in terms of simpler

relations and properties father, mother, male. Using the Prolog logic language one

can say:

11

 brother(X,Y) /* X is the brother of Y */

 :- /* if there are two people F and M for which*/

 father(F,X), /* F is the father of X */

 father(F,Y), /* and F is the father of Y */

 mother(M,X), /* and M is the mother of X */

 mother(M,Y), /* and M is the mother of Y */

 male(X). /* and X is male */

That is X is the brother of Y if they have the same father and mother and X is male.

Here ":-" stands for logical implication (written right to left).

Mathematical logic has always had an important role in computation, since boolean

logic is the basis of the design of the logic circuits which form the basis of any

computer. In the logic paradigm we make use of a more advanced construct, namely

predicate logic, to give us languages of enhanced expressive power.

The Object-Oriented Paradigm

The Object-Oriented paradigm (often written O-O) focusses on the objects that a

program is representing, and on allowing them to exhibit "behaviour". This is

contrasted with the typical approach in the imperative paradigm, in which one

typically thinks of operating on data with procedures. In the imperative paradigm

typically the data are passive, the procedures are active. In the O-O paradigm, data is

combined with procedures to give objects, which are thereby rendered active. For

example, in the imperative paradigm, one would write a procedure which prints the

various kinds of object in the program. In the O-O paradigm, each object has a print-

method, and you "tell" an object to print itself.

It is however possible to use certain non-object-oriented languages to write object-

oriented programs. What is required is the ability to create data-structures that

contain machine code, or pointers to machine code. This is possible in the C

language and in most functional languages (where functions are represented as

code).

Objects belong to classes. Typically, all the objects in a given class will have the

same kinds of behaviour.

Classes are usually arranged in some kind of class hierarchy. This hierarchy can be

thought of as representing a "kind of" relation. For example, a computational model

of the University might need a class person to represent the various people who

make up the University. A sub-class of person might be a student; students are a kind

of person. Another sub-class might be professor. Both students and professors can

12

exhibit the same kinds of behaviour, since they are both people. They both eat drink

and sleep, for example. But there are kinds of behaviour that are distinctive:

professors pontificate for example.

References:

[1] Wirth, Niklaus. "The programming language Pascal." Acta informatica 1.1

(1971): 35-63.

[2] Iverson, Kenneth E. "A programming language." Proceedings of the May 1-3,

1962, spring joint computer conference. 1962.

[3] Wirth, Niklaus. "The programming language Oberon." Softw., Pract. Exper. 18.7

(1988): 671-690.

[4] Iverson, Kenneth E. "A programming language." Proceedings of the May 1-3,

1962, spring joint computer conference. 1962.

[5] Hansen, Per Brinch. "The programming language concurrent pascal." IEEE

Transactions on Software Engineering 2 (1975): 199-207.

[6] Ghezzi, Carlo, and Mehdi Jazayeri. Programming language concepts. John

Wiley & Sons, 2008.

