

Probabilistic Encryption and Decryption for

Message Decoding

Author Name: JV’n Ms. Nishu Sharma, JV’n Ms. Bhawana Verma, JV’n Ms. Swarnima

Published By: Women University Press

Publisher’s Address: Jayoti Vidyapeeth Women’s University, Jaipur

Vedaant Gyan Valley,

Village-Jharna, Mahala Jobner Link Road, NH-8

Jaipur Ajmer Express Way,

Jaipur-303122, Rajasthan (INDIA)

Printer’s Detail: Jayoti Publication Desk

Edition Detail: I

ISBN: 978-81-950200-0-3

Copyright ©- Jayoti Vidyapeeth Women’s University, Jaipur

Index

S.No. Content Page No.

1. Introduction

1

2. Literature Review

11

3. Algorithm And Examples of Goldwasser-Micali

Scheme
32

4. Software Tool (Code and Screeshots) 39

5. Conclusion and Future Work

56

6. References

59

Page | 1

Chapter - 1

INTRODUCTION

1.1 Introduction

In the current scenario of the world, the technologies have advanced so much that most of

the people prefer working with the internet as the main medium to transfer data or messages

from one location to another in the world. There are various possible ways to transmit data

through internet: via e-mails, chats, etc. The data transition is made very fast, simple, efficient

and accurate via the internet.

However, the main problems while sending the data over the internet is security threat it faces

i.e. the personal or confidential data can be stolen or hacked in many ways. Therefore it becomes

important to consider the data security, as it is one of the most important factors that need

attention in the process of data transferring.

Data security means protecting the data from unauthorized users or hackers and providing high

security to stop or prevent data modification. This area of data security has gained much more

attention over the last few years of period of time due to the heavy increase in data transfer rate

through the internet.

With the introduction and revolution in data security in communications, one more change that

affected security is the introduction of distributed applications or systems which requires

carrying of data between different type of users and a set of computers. Network security

measures are needed to measure data protection during their transmission. The mechanisms

which are used to meet the requirements of secure data transfer like authentication and

confidentiality are observed are quite complex. Security mechanisms usually involves different

type of algorithms or protocols for encryption & decryption purposes and for generation of

different keys and subkeys to be mapped with plain text to generated cipher text. It means that

participants of transmission will have some piece of secret information (Key), which will be used

for protecting data from unauthorized users.

Page | 2

To work with security services of any company or organization, the policy makes needs to work

in a systematic way. They need to make proper policy for all the aspects related to data security.

Basically all the aspects might be divided in three different categories. These categories are

security attack, security services and security mechanism.

In the study of security attacks, one tries to identify the different possible modes by which

hackers of intruders might enter in the system for unauthorized use of resources. The security

services are the ways to counter security attacks. There might be different security services for

different organizations or different type of organizations. The security services choosen by one

policymaker might be different than another one. There might be one or more security

mechanism to provide the service.

Different type of mechanism provides different services specified. There is no single mechanism

which can be applied on all specified services. The general form of mechanism that supports all

type of information security is cryptographic technique. Encryption of information or data is the

one of the most common way of providing data security. The general model for encryption can

be represented by following figure.:

By above diagram, all the basic tasks for designing a particular security service can be divided in

following four tasks:

1. Designing algorithms for encryption and decryption

Page | 3

2. Generation of secret key information with the help of above step 1

3. Sharing and distribution for secret information

4. Designing protocols so that both communicating parties can communicate.

A crypto system is simply an algorithm with all possible plain texts, cipher texts and keys.

Generally key based algorithms can be categorized in two different types of key based

algorithms: symmetric keys and public keys.

In most symmetric algorithms, the same key is used for encryption and decryption both, as

shown in Figure:

Symmetric-key encryption

The process of symmetric-key encryption can be very fast because the communicating parties

don’t get any time delay.

Symmetric algorithms can be categorized into two different categories. Some operate on plain

text a single bit or a byte at a time, these are called stream cipher algorithms or stream ciphers.

Page | 4

Others operate on a number of bits (typically 64 bits are used in modern ciphers), and encrypt the

whole as a single unit. Such algorithms are known as block algorithms.

Asymmetric encryption or public key algorithms uses different keys for encryption and

decryption, and the decryption key cannot directly (practically) be calculated or derived from the

encryption key. First key which is also known as public key can be declared public and the

second one is private that means the key is known only to any specific participating party. Public

key cryptography can also be used for digital signing as it supports authentication of users. The

information encrypted with one public key will only be decrypted with the other key. Also the

decryption key or private which will be used by counter party, cannot be calculated from the

public and encryption key. Following figure shows a simplified view of the public-key

encryption or asymmetric encryption.

Probabilistic data encryption method was introduced by Goldwasser and Micali. In this method,

every message has many different possible encodings schemes and every bit of message is

encrypted independently. . They use the predicate “quadratic residue modulo n”. If security

parameter is k then each bit is coded separately by a k-bit long string and even, it results in at

least a k-bit data expansion factor.

Given a composite integer n = p*q and a Z*
n with (a/n) = 1, decide whether or not a is a quadratic

residue modulo n. There is no efficient procedure known for solving the quadratic residuacity

Page | 5

problem if the factorization of n is unknown. This problem is based on the Quadratic residuacity

assumption which states that for sufficiently large primes p and q for real-life algorithm it is

infeasible to solve Quadratic Residuacity Problem, but if the factorization of n = pq is known, it

is easy to solve QRP by computing (a/p), since a is pseudo square if and only if (a/p) = (a/q) = -1.

Our encryption scheme is based on the function that maps elements of Z*
n to quadratic residues

modulo n.

Public key methods are important because they can be used for transmitting encryption keys or

other data securely even when the parties have no opportunity to agree on a secret key in private.

In symmetric-key encryption, security of data is done by common key which is shared by both of

participating parties. It provides a good degree of authentication, since the information which is

encrypted with one symmetric key cannot be decrypted with any other key. Thus, if the

symmetric key is kept secret by the two communicating parties using it to encrypt

communications, each party can be confident that it is communicating with the other as long as

the decrypted messages specify a meaningful sense.

Sender’s Message

Plain text converted to cipher text using private key Cipher text converted back to plain text

using the same private key

Receiver’s message

Symmetric-key encryption will be successful only if the symmetric key is kept secured by the

two parties involved. If anyone else discovers the key, it affects both confidentiality and

authentication. The success of a symmetric algorithm rests in the key, divulging the key means

that any one could encrypt and decrypt messages. As long as the communication needs to remain

secure, the key must be protected between the participating parties.

Encryption and decryption with a symmetric algorithm are denoted by

E K (M) = C

Page | 6

D K (M) = P

Symmetric algorithms can be divided into two categories. Some operate on the plain text a single

bit or byte at a time, these are called stream algorithms or stream ciphers. Others operate on

group of bits or characters. Such algorithms are called block algorithms. Public Key algorithms

use two keys, one key for encryption and the other for decryption. One key can be called as

public key which can be declared public and the other one is private that is, the key is known

only to the particular participating party. And also public key cryptography can be used for

digital signing as it supports authentication of users. The information encrypted with one key

will only be decrypted with the other key. Further more the decryption key cannot be calculated

from the encryption key. Figure 1.3 shows a simplified view of the way public-key encryption

works.

Figure 1.3 Public-key encryption

Sender’s Message

Plain text converted to cipher text using public key of receiver Cipher text converted back to

plain text using the private key of receiver

Receiver’s message

Compared with symmetric-key encryption, public-key encryption requires more computation and

is therefore not always appropriate for large amounts of data. However, it's possible to use

public-key encryption to send a symmetric key, which can then be used to encrypt additional

data. This is the approach used by the SSL protocol. This provides Authentication, Integrity &

Confidentiality of Information at low computing power. Since authentication of the users is very

important in applications like ecommerce and other similar applications, public key cryptography

is of much use.

Encryption and decryption can be represented in a public key scheme is

E Kpu(M) = C

D Kpr(C) = M

Where Kpu is the public key and Kpr is the private key. In public key encryption there is always

a possibility of some information being leaked out. A crypto analyst tries to get some

Page | 7

information based on ones public key. Complete information can not be gained here but a part of

information may be gained. In probabilistic Encryption, multiple cipher texts are generated for

one plain text, a cryptanalyst can not generate any information by chosen plain text and chosen

cipher text attacks.

Figure 1.4 Probabilistic encryption

Sender’s Message

Plain text converted to multiple cipher texts using key Multiple Cipher texts converted back to

plain text using the same key

Receiver’s message

Security Analysis of algorithms: Different algorithms offers different degrees of security, it

depends on how hard they are to break. If the cost required to break an algorithm is greater than

the value of the encrypted data, then the algorithm is supposed to be safe. If the time required

breaking an algorithm is longer than the time that the encrypted data must remain secret, and

then also it is safe. If the amount of data encrypted with a single key is less than the amount of

data necessary to break the algorithm, it is supposed to be safe.

An algorithm is unconditionally secure if, it is difficult to recover the plain text in spite of having

substantial amount of cipher text. In such circumstances, only a one time pad is unbreakable in a

cipher text only attack, simply by trying every possible key one by one and by checking whether

the resulting plain text is meaningful. This is called a brute force attack. Cryptography is more

concerned with crypto systems that are computationally infeasible to break. Any algorithm is

considered computationally secure if it cannot be broken with available resources.

The complexity of an attack can be measured as Data Complexity, the amount of data needed as

input to the attack, processing complexity, the time needed to perform the attack and storage

requirements which are the amount of memory needed to do the attack which is space

complexity.

As a thumb rule, the complexity of an attack is taken to be minimum of these three factors.

Another classification of complexities is by complexity of the algorithm by its construction and

Page | 8

complexity of the algorithm by its strength. By its construction, the time complexity of the

algorithm can be calculated by executing through the steps of the algorithm, which will be

referred as O(n). Complexities can also be expressed as orders of magnitude. If the length of the

key is k, then the processing complexity is given by 2k .

It means that 2 k operations are required to break the algorithm. Then the complexity of the

algorithm is said to be exponential in nature. A desirable property of any encryption algorithm is

that a small change in plain text or the key should produce significant change in cipher text. Such

an effect is known as avalanche effect. The more the avalanche affects of the algorithm, the

better the security. Crypto analysis is the study of recovering the plain text with out access to the

key. It may also find weakness in a crypto system that identifies patterns which can be useful in

knowing the previous results.

An attempted crypto analysis is called an attack. There are five types of attack. Each of them

assumes that the crypto analyst has complete knowledge of the encryption algorithm used.

1. Cipher text only attack: Here the intruder is in hold of cipher text only. The crypto analyst

has cipher text of several messages, all of which have been encrypted using the same encryption

algorithm. The crypto analyst’s job is to recover the plain text or the key used to encrypt the

messages, in order to decrypt other part of messages encrypted with the same keys.

2. Known Plaintext attack: The crypto analyst is in possession of pairs of known plain text and

cipher text. His job is to get the key used to encrypt the messages or an algorithm to decrypt any

messages encrypted with the same key.

3. Chosen Plaintext Attack (CPA): Here the crypto analyst is in hold of not only cipher text but

also parts of chosen plain text. Here the intruder is identified to be placed at encryption site to do

the attack. Differential crypto analysis is an example of this mode.

Page | 9

4. Chosen cipher text attack (CCA): Under the CCA model, the crypto analyst is in possession

of chosen cipher text and corresponding plain text being decrypted from the private key. After it

has chosen the messages, however, it only has access to an encryption machine.

5. Chosen text: In this model, the analyst posses the encipher algorithm, Cipher text to be

decrypted, chosen plain text messages and corresponding cipher texts, fabricated cipher text with

the corresponding decrypted plain texts developed by the private key.

1.2 Present work:

In this work an attempt has been made to generate two algorithms which provide security to data

transmitted. In the work we will discuss various algorithms required for encryption and

decryption using probabilistic encryption. In this work both the algorithms are discussed in terms

of computational security, computational complexity and computational overhead. Both the

algorithms are studied for their strengths and limitations. A crypto analytical study of the

algorithms with emphasis on probabilistic encryption is also considered in this study. The

encryption algorithms are compared with standard algorithms like RC4 and DES. The algorithms

are also discussed in terms of its applications and also about their advantages and limitations in

network security environment.

1.2 Objectives of Proposed Study

 To discuss the method of encryption and decryption algorithm of probabilistic

encryption.

 To discuss the method and examples of probabilistic encryption

 To develop a software system(Java Based) for encryption and decryption of probabilistic

encryption.

Page | 10

1.4 Outline of This Book

In chapter 1, the general overview is given with proposed study and outline of the book.

Chapter 2 introduces detailed literature review. Chapter 3 discussees about the probabilistic

encryption with its methods and some of the examples. Chapter 4 describes screenshots and

code of java application which is developed for probabilistic encryption In Chapter 5, conclusion

and future work is given. At last references are shown.

Page | 11

Chapter- 2

LITERATURE REVIEW

A crypto system Amjay Kumar et al 2009, is an algorithm which include all possible plain

texts, cipher texts and keys. There are two general types of key based algorithms: symmetric and

public key.

2.1 Symmetric Encryption Schemes:

With symmetric-key encryption, the encryption key can be calculated from the decryption key

and vice versa. With most symmetric algorithms, the same key is used for both encryption and

decryption. Implementations of symmetric key encryption can be highly efficient, so that users

do not experience any significant time delay as a result of the encryption and decryption.

Symmetric-key encryption also provides a degree of authentication, since information encrypted

with one symmetric key cannot be decrypted with any other symmetric key. Thus, as long as the

symmetric key is kept secret by the two parties using it to encrypt communications, each party

can be sure that it is communicating with the other as long as the decrypted messages continue to

make sense.

Encryption functions normally take a fixed-size input to a fixed-size output, so encryption of

longer units of data must be done in one of two ways: either a block is encrypted at a time and

the blocks are somehow joined together to make the cipher text,

2.1.1 Block ciphers

Block ciphers take as input the key and a block, often the same size as the key. Further, the first

block is often augmented by a block called the initialization vector, which can add some

randomness to the encryption.

2.1.1.1 DES Algorithm:

The most widely used encryption scheme is based on Data Encryption Standard (DES). There

are two inputs to the encryption function, the plain text to be encrypted and the key. The plain

text must be 64 bits in length and key is of 56 bits. First, the 64 bits of plain text passes through

Page | 12

an initial permutation that rearranges the bits. This is fallowed by 16 rounds of same function,

which involves permutation & substitution functions. After 16 rounds of operation, the pre

output is swapped at 32 bits position which is passed through final permutation to get 64 bit

cipher text.

Initially the key is passed through a permutation function. Then for each of the 16 rounds, a sub

key is generated by a combination of left circular shift and permutation. At each round of

operation, the plain text is divided to two 32 bit halves, and the fallowing operations are executed

on 32 bit right halve of plain text. First it is expanded to 48 bits using a expansion table, then X-

ORed with key, then processed in substitution tables to generate 32 bit output. This output is

permuted using predefined table and XORed with left 32 bit plain text to form right 32 bit pre

cipher text of first round. The right 32 bit plain text will form left 32 bit pre cipher text of first

round. Decryption uses the same algorithm as encryption, expect that the application of sub keys

is reversed. A desirable property of any encryption algorithm is that a small change in either

plain text or the key should produce a significant change in the cipher text. This effect is known

as Avalanche effect which is very strong in DES algorithm. Since DES is a 56 bit key encryption

algorithm, if we proceed by brute force attack, the number of keys that are required to break the

algorithm is 256 . But by differential crypto analysis, it has been proved that the key can be

broken in 247 combinations of known plain texts. By linear crypto analysis it has been proved

that, it could be broken by 241 combinations of plain text.

The DES algorithm is a basic building block for providing data security. To apply DES in a

variety of applications, four modes of operations have been defined. These four models are

intended to cover all possible applications of encryption for which DES could be used. They

involve using a initialization vector being used along with key to provided different cipher text

blocks.

2.1.1.1.1 Electronic Code Book (ECB) mode: ECB mode divides the plaintext into blocks m1,

m2, ..., mn, and computes the cipher text ci = Ei(mi). This mode is vulnerable to many attacks

and is not recommended for use in any protocols. Chief among its defects is its vulnerability to

Page | 13

splicing attacks, in which encrypted blocks from one message are replaced with encrypted blocks

from another.

2.1.1.1.2 Cipher Block Chaining (CBC) mode: CBC mode remedies some of the problems of

ECB mode by using an initialization vector and chaining the input of one encryption into the

next. CBC mode starts with an initialization vector iv and XORs a value with the plaintext that is

the input to each encryption. Since each block depends on all previous blocks along with the

initialization vector. The is a good example of a nonce that needs to satisfy Uniqueness but not

unpredictability.

2.1.1.1.3 Cipher Feed-Back (CFB) mode: CFB mode moves the XOR of CBC mode to the

output of the encryption. In other words, the cipher text c1 = p1 XOR Sj(E(IV)). This mode then

suffers from failures of Non-Malleability, at least locally to every block, but changes to cipher

text do not propagate very far, since each block of cipher text is used independently to XOR

against a given block to get the plaintext.

These failures can be seen in the following example, in which a message m = m1 m2 ... mn is

divided into n blocks, and encrypted with an iv under CFB mode to c1 c2 ... cn. Suppose an

adversary substitutes c'2 for c2. Then, in decryption, m1 = Ek(iv) XOR c1, which is correct, but

m'2 = Ek(c1) XOR c'2, which means that m'2 = m2 XOR c2 XOR c'2, since m2 = Ek(c1) XOR

c2. Thus, in m2, the adversary can flip any bits of its choice. Then m'3 = Ek(c'2) XOR c3, which

should lead to random looking message not under the adversary's control, since the encryption of

c'2 should look random. But m4 = Ek(c3) XOR c4 and thereafter the decryption is correct.

2.1.1.1.4 Output Feed-Back (OFB) mode OFB mode modifies CFB mode to

feed back the output of the encryption function to the encryption function without XORing the

cipher text.

2.1.1.2 Triple DES:

Given the potential vulnerability of DES to brute force attack, a new mechanism is adopted

which uses multiple encryptions with DES and multiple keys. The simplest form of multiple

Page | 14

encryptions has two encryption stages and two keys. The limitation with this mechanism is it is

susceptible to meet in the middle attack. An obvious counter to meet in the middle attack and

reducing the cost of increasing the key length, a triple encryption method is used, which

considers only two keys with encryption with the first key, decryption with the second key and

fallowed by encryption with the first key. Triple DES is a relatively popular alternative to DES

and has been adopted for use in key management standards.

2.1.1.3 Homomorphic DES:

A variant of DES called a homophonic DES Carlone Fontaine et al, is considered. The DES

algorithm is strengthened by adding some random bits into the plaintext, which are placed in

particular positions to maximize diffusion, and to resist differential attack. Differential attack

makes use of the exclusive-or homophonic DES. In this new scheme, some random estimated

bits are added to the plaintext. This increases the certain plaintext difference with respect to the

cipher text.

A homophonic DES is a variant of DES that map search plaintext to one of many cipher texts

(for a given key). In homophonic DES a desired difference pattern with the cipher text will be

suggested with some key values including the correct one, oppositely wrong pairs of cipher text.

For a difference pattern which 56-bit plaintext to a 64-bit cipher text using a 56-bit key. In this

scheme, eight random bits are placed in specific positions of the 64-bit input data block to

maximize diffusion.

For example, the random bits in HDESS are the bit- positions 25, 27, 29, 31, 57, 59, 61 and 63.

In this algorithm, after the initial permutation and expansion permutation in the first round, these

eight random bits will spread to bits 2, 6, 8, 12, 14, 18, 20, 24, 26, 30, 32, 36, 38,42,44,48 of the

48-bit input block to the S-boxes and will affect the output of all the S-boxes. The 48 expanded

bits must be exclusive-or’d with some key before proceeding to the S-boxes, thus two input bits

into the S-boxes derived from the same random bit may have different values. This says that the

random bits do not regularize the input to the S-boxes, that is, the property of confusion does not

reduce while we try to maximize diffusion.

Page | 15

The decryption of the homophonic DES is similar to the decryption of DES. The only difference

is that eight random bits must be removed to get the original plaintext (56 bits). A homophonic

DES can easily be transformed into a triple-encryption version by concatenating a DES

decryption and a DES encryption after the homophonic DES.

Security analysis: Thus there is a probability of 1/256 between a pair of texts. The differential

crypto analysis is also difficult on this mechanism. The diffusion of bits is also more in this

mode. Thus this mechanism provides some probabilistic features to DES algorithm which makes

it stronger from differential and linear crypto analysis.

2.1.1.4 AES:

The Advanced Encryption Standard (AES) was chosen in 2001. AES is also an iterated block

cipher, with 10, 12, or 14 rounds for key sizes 128, 192, and 256 bits, respectively. AES provides

high performance symmetric key encryption and decryption.

2.1.1.5 Dynamic substitution:

An apparently new cryptographic mechanism Terry Ritter 1999, which can be described as

dynamic substitution is discussed in the fallowing topic. Although structurally similar to simple

substitution, dynamic substitution has a second data input which acts to re-arrange the contents

of the substitution table. The mechanism combines two data sources into a complex result; under

appropriate conditions, a related inverse mechanism can then extract one of the data sources

from the result. A dynamic substitution combiner can directly replace the exclusive-OR

combiner used in Vernam stream ciphers. The various techniques used in Vernam ciphers can

also be applied to dynamic substitution; any cryptographic advantage is thus due to the additional

strength of the new combiner.

2.1.1.5.1 The Vernam Cipher: A Vernam cipher maps plaintext data with a pseudo-random

sequence to generate cipher text. Since each ciphertext element from a Vernam combiner is the

(mod 2) sum of two unknown values, the plaintext data is supposed to be safe. But this mode is

susceptive to several cryptanalytic attacks, including known plain text and cipher text attacks.

And if the confusion sequence can be penetrated and reproduced, the cipher is broken. Similarly,

Page | 16

if the same confusion sequence is ever re-used, and the overlap identified, it becomes simple to

break that section of the cipher.

2.1.1.5.2 Cryptographic Combiners: An alternate approach to the design of a secure stream

cipher is to seek combining functions which can resist attack; such functions would act to hide

the pseudo-random sequence from analysis.

The mechanism of this work is a new combining function which extends the weak classical

concept of simple substitution into a stronger form suitable for computer cryptography.

2.1.1.5.3 Substitution Ciphers: In simple substitution ciphers each plain text character is

replaced with fixed cipher text character. But this mechanism is weak from statistical analysis

methods where by considering the rules of the language, the cipher can be broken. This work is

concerned with the cryptographic strengthening of the fundamental substitution operation

through dynamic changes to a substitution table. The substitution table can be represented as a

function of not only input data but also a random sequence. This combination gives a

cryptographic combining function; such a function may be used to combine plaintext data with a

pseudo-random sequence to generate enciphered data.

2.1.1.5.4 Dynamic Substitution: A simple substitution table supported with combining function

gives the idea of dynamic substitution. A substitution table is used to translate each data value

into an enciphered value. But after each substitution, the table is re-ordered. At a minimum, it

makes sense to exchange the just-used substitution value with some entry in the table selected at

random. This generally changes the just-used substitution value to help prevent analysis, and yet

retains the existence of an inverse, so that the cipher can be deciphered.

2.1.1.5.5 Black Box Analysis: Dynamic substitution may be considered to be a black box, with

two input ports Data In and Random In, and one output port Combiner Out. In the simple

version, each data path has similar width; evidently the mechanism inside the box in some way

combines the two input streams to produce the output stream. It seems reasonable to analyze the

output statistically, for various input streams.

Page | 17

2.1.1.5.6 Polyalphabetic Dynamic Substitution: A means to defend to known plain text and

chosen-plaintext attacks would be to use multiple different dynamic substitution maps and to

select between them using a hidden pseudo-random sequence. Thus the dynamic substitution if

free from statistical attacks where each character of plain text is replaced with multiple

characters of cipher text which makes the mechanism robust.

2.1.1.5.7 Internal State: Dynamic substitution contains internal data which after initialization is

continuously re-ordered as a consequence of both incoming data streams; thus, the internal state

is a function of initialization and all subsequent data and confusion values. The changing internal

state of dynamic substitution provides necessary security to the data streams.

Thus dynamic substitution provides a probabilistic nature to the enciphering mechanism. The

limitation with this scheme is, not only different dynamic substitution tables has to be maintained

but also the pseudo random sequence which selects between these dynamic substitution tables

has to be shared between sender and receiver.

2.1.1.6 Nonces

Phillip Rogaway, A nonce is a bit string that satisfies Uniqueness, which means that it has not

occurred before in a given run of a protocol. Nonces might also satisfy Unpredictability, which

effectively requires pseudo-randomness: no adversary can predict the next nonce that will be

chosen by any principal. There are several common sources of nonces like counters, time slots

and so on.

2.1.1.6.1 Nonce Based Encryption: In this work a different formalization for symmetric

encryption is envisaged. The encryption algorithm is made to be a deterministic function, but it is

supported with initialization vector (IV). Efficiency of the user is made success of this mode.

The IV is a nonce like value, used at most once within a session. Since it is used at most once

having any sort of crypto analysis is practically not possible which provides sufficient security.

2.1.1.7 One-Time Pad Encryption

Page | 18

One more encryption mechanism for providing security to data is one time pad Henry Baker et

al 1982, encryption. The functions are computed as follows: A and B agree on a random number

k that is as long as the message they later want to send.

Ek(x) = x XOR k

Dk(x) = x XOR k

Note that since k is chosen at random and not known to an adversary, the output of this scheme is

indistinguishable to an adversary from a random number. But it suffers from several limitations.

It is susceptible to chosen plain text and chosen cipher text attacks. Again the limitation is here is

sharing of one time keys by the participating parties of the encryption scheme. As a new key is

always used for encryption, a continuous sharing of key mechanism has to be employed by the

participating parties.

2.1.2 Stream ciphers

Unlike block ciphers, stream ciphers J.William stalling 1998, (such as RC4) produce a

pseudorandom sequence of bits that are then combined with the message to give an encryption.

Since the combining operation is often XOR, naive implementations of these schemes can be

vulnerable to the sort of bit-flipping attacks on Non-Malleability. Two types of stream ciphers

exist: synchronous, in which state is kept by the encryption algorithm but is not correlated with

the plaintext or cipher text, and self synchronizing, in which some information from the plaintext

or cipher text is used to inform the operation of the cipher.

2.1.2.1 RC4 Encryption Algorithm:

Ronald Rivest of RSA developed the RC4 algorithm, which is a shared key stream cipher

algorithm requiring a secure exchange of a shared key. The algorithm is used identically for

encryption and decryption as the data stream is simply XORed with the generated key sequence.

The algorithm is serial as it requires successive exchanges of state entries based on the key

sequence. Hence implementations can be very computationally intensive. In the algorithm the

key stream is completely independent of the plaintext used. An 8 * 8 S-Box (S0 S255), where

each of the entries is a permutation of the numbers 0 to 255, and the permutation is a function of

the variable length key.

Page | 19

There are two counters i, and j, both initialized to 0 used in the algorithm.

2.1.2.1.1 Algorithm Features:

1.It uses a variable length key from 1 to 256 bytes to initialize a 256-byte state table. The state

table is used for subsequent generation of pseudo-random bytes and then to generate a pseudo-

random stream which is XORed with the plaintext to give the cipher text. Each element in the

state table is swapped at least once.

2. The key is often limited to 40 bits, because of export restrictions but it is sometimes used as a

128 bit key. It has the capability of using keys between 1 and 2048 bits. RC4 is used in many

commercial software packages such as Lotus Notes and Oracle Secure.

3. The algorithm works in two phases, key setup and ciphering. During a N-bit key setup (N

being your key length), the encryption key is used to generate an encrypting variable using two

arrays, state and key, and N-number of mixing operations. These mixing operations consist of

swapping bytes, modulo operations, and other formulas.

2.1.2.1.2 Algorithm Strengths:

The difficulty of knowing which location in the table is used to select each value in the sequence.

A particular RC4 Algorithm key can be used only once and Encryption is about 10 times faster

than DES.

Algorithm Weakness: One in every 256 keys can be a weak key. These keys are identified by

cryptanalysis that is able to find circumstances under which one of more generated bytes are

strongly correlated with a few bytes of the key. Thus some symmetric encryption algorithms

have been discussed in this chapter.

They varies from block ciphers like DES, Triple DES, Homomorphic DES to stream ciphers like

RC4. To the symmetric encryption mechanisms concepts like application of Nounce and

dynamic substitution are discussed which provides randomness to the encryption mechanism.

This probabilistic nature to the encryption mechanism provides sufficient strength to the

Page | 20

algorithms against Chosen Cipher text attacks(CCA). The security with all these mechanisms lies

with proper sharing of keys among the different participating parties.

2.1.3 Adoptability of some mathematical functions in Cryptography:

Sign Function: Pandit S.N.N 1963, This function when applied on when applied on a matrix of

values, converts all the positive values to 1, negative values to -1 & zero with 0. The advantage

of using this function in cryptography is it cannot be a reversible process ie we cannot get back

to the original matrix by applying a reverse process.

Modular Arithmetic: One more function that is widely used in cryptography is modular

arithmetic of a number with a base value. It will generate the remainder of a number with respect

to the base value. This function is widely used in public key cryptography.

2.2 Public-Key Encryption

The most commonly used implementations of public-key Henry Baker et al 1982, encryption

are based on algorithms patented by RSA Data Security. Therefore, this section describes the

RSA approach to public-key encryption.

Public-key encryption (also called asymmetric encryption) involves a pair of keys a public key

and a private key, used for security & authentication of data. Each public key is published, and

the corresponding private key is kept secret. Data encrypted with one key can be decrypted only

with other key.

The scheme shown in Figure 1.2 says public key is distributed and encryption being done using

this key. In general, to send encrypted data, one encrypt’s the data with the receiver’s public key,

and the person receiving the encrypted data decrypts it with his private key.

Compared with symmetric-key encryption, public-key encryption requires more computation and

is therefore not always appropriate for large amounts of data. However, a combination of

symmetric & Asymmetric schemes can be used in real time environment. This is the approach

used by the SSL protocol.

Page | 21

As it happens, the reverse of the scheme shown in Figure 1.2 also works: data encrypted with

one’s private key can be decrypted only with his public key. This may not be an interesting way

to encrypt important data, however, because it means that anyone with receiver’s public key,

which is by definition published, could decipher the data. And also the important requirement

with data transfer is authentication of data which is supported with Asymmetric encryption

schemes, which is an important requirement for electronic commerce and other commercial

applications of cryptography.

2.2.1 Key Length and Encryption Strength:

In general, the strength of encryption algorithm depends on difficulty in getting the key, which in

turn depends on both the cipher used and the length of the key. For the RSA cipher, the strength

depends on the difficulty of factoring large numbers, which is a well-known mathematical

problem. Encryption strength is often described in terms of the length of the keys used to

perform the encryption, means the more the length of the key, the more the strength. Key length

is measured in bits. For example, a RC4 symmetric-key cipher with key length of 128 bits

supported by SSL provide significantly better cryptographic protection than 40-bit keys for use

with the same cipher. It means 128-bit RC4 encryption is 3 x 1026 times stronger than 40-bit

RC4 encryption. Different encryption algorithms require variable key lengths to achieve the

same level of encryption strength.

Other ciphers, such as those used for symmetric key encryption, can use all possible values for a

key of a given length, rather than a subset of those values. Thus a 128-bit key for use with a

symmetric-key encryption cipher would provide stronger encryption than a 128-bit key for use

with the RSA public-key encryption cipher. This says that a symmetric encryption algorithm

with a key length of 56 bits achieve a equal security to Asymmetric encryption algorithm with a

key length of 512 bits,

2.2.2 RSA Key Generation Algorithm

1. Two large prime numbers are considered. Let them be p,q.

2. Calculate n = pq and (_) phi = (p-1)(q-1).

Page | 22

3. Select e, such that 1 < e < phi and gcd(e, phi) = 1.

4. Calculate d, the private key, such that de =1 mod phi.

One key is (n, e) and the other key is (n, d). The values of p, q, and phi should also be kept

secret.

• n is known as the modulus.

• e is known as the public key.

• d is known as the secret key.

Encryption

Sender A does the following:-

1. Get the recipient B's public key (n, e).

2. Identify the plaintext message as a positive integer m.

3. Calculate the ciphertext c = m^e mod n.

4. Transmits the ciphertext c to receiver B.

Decryption

Recipient B does the following:-

1. Consider his own private key (n, d) to compute the plain text m = c^d mod n.

2. Convert the integer to plain text form.

2.2.3 Digital signing

Sender A does the following:-

This concept can also be used in digital signing as well. The message to be transmitted is

converted to some message digest form. This message digest is converted to encryption form

using his private key. This encrypted message digest is transmitted to receiver.

Signature verification

Recipient B does the following:-

1. Using the sender’s public key, the received message digest is decrypted. From the received

message, the receiver independently computes the message digest of the information that has

been signed.

Page | 23

2. If both message digests are identical, the signature is valid. Compared with symmetric-key

encryption, public-key encryption provides authentication & security to the data transmitted but

requires more computation and is therefore not always appropriate for large amounts of data.

2.3. Probabilistic encryption schemes

In public key encryption there is always a possibility of some information being leaked out.

Because a crypto analyst can always encrypt random messages with a public key, he can get

some information. Not a whole of information is to be gained here, but there are potential

problems with allowing a crypto analyst to encrypt random messages with public key. Some

information is leaked out every time to the crypto analyst, he encrypts a message.

With probabilistic encryption algorithms Georg J.Fuchsbauer 2006, a crypto analyst can no

longer encrypt random plain texts looking for correct cipher text. Since multiple cipher texts will

be developed for one plain text, even if he decrypts the message to plain text, he does not know

how far he had guessed the message correctly. To illustrate, assume a crypto analyst has a certain

cipher text ci. Even if he guesses message correctly, when he encrypts message the result will be

completely different cj. He cannot compare ci and cj and so cannot know that he has guessed the

message correctly. Under this scheme, different cipher texts will be formed for one plain text.

Also the cipher text will always be larger than plain text. This develops the concept of multiple

cipher texts for one plain text. This concept makes crypto analysis difficult to apply on plain text

and cipher text pairs.

An encryption scheme consists of three algorithms: The encryption algorithm transforms

plaintexts into cipher texts while the decryption algorithm converts cipher texts back into

plaintexts. A third algorithm, called the key generator, creates pairs of keys: an encryption key,

input to the encryption algorithm, and a related decryption key needed to decrypt. The encryption

key relates encryptions to the decryption key. The key generator is considered to be a

probabilistic algorithm, which prevents an adversary from simply running the key generator to

get the decryption key for an intercepted message. The following concept is crucial to

probabilistic cryptography:

Page | 24

2.3.1 Definition [Probabilistic Algorithm]:

Georg J.Fuchsbauer 2006, A probabilistic algorithm is an algorithm with an additional

command RANDOM that returns “0” or “1”, each with probability 1/2. In the literature, these

random choices are often referred to as coin flips.

2.3.1.1 Chosen Cipher Text Attack:

In the simplest attack model, known as Chosen Plaintext Attack (CPA) Brassard G, the

adversary has access to a machine that will perform arbitrary encryptions but will not reveal the

shared key. This machine corresponds intuitively to being able to see many encryptions of many

messages before trying to decrypt a new message. In this case, Semantic Security requires that it

be computationally hard for any adversary to distinguish an encryption Ek(m) from Ek(m') for

two arbitrarily chosen messages m and m'. Distinguishing these encryptions should be hard even

if the adversary can request encryptions of arbitrary messages. Note that this property cannot be

satisfied if the encryption function is deterministic! In this case, the adversary can simply request

an encryption of m and an encryption of m' and compare them. This is a point that one should all

remember when implementing systems: encrypting under a deterministic function with no

randomness in the input does not provide Semantic Security. One more crypto analytical model

is Chosen Cipher text Attack (CCA) Model. Under the CCA model, an adversary has access to

an encryption and a decryption machine and must perform the same task of distinguishing

encryptions of two messages of its choice. First, the adversary is allowed to interact with the

encryption and decryption services and choose the pair of messages. After it has chosen the

messages, however, it only has access to an encryption machine. An advancement to CCA

Model is Chosen Cipher text Attack 2 (CCA2). CCA2 security has the same model as CCA

security, except that the adversary retains access to the decryption machine after choosing the

two messages. To keep this property from being trivially violated, we require that the adversary

not be able to decrypt the cipher text it is given to analyze.

To make these concepts of CCA & CCA2 adoptable in real time environment, recently Canetti,

Krawczyk and Nielsen defined the notion of replayable adaptive chosen ciphertext attack Brics

2004, secure encryption. Essentially a cryptosystem that is RCCA secure has full CCA2 security

except for the little detail that it may be possible to modify a ciphertext into another ciphertext

Page | 25

containing the same plaintext. This provides the possibility of perfectly replayable RCCA secure

encryption. By this, we mean that anybody can convert a ciphertext y with plaintext m into a

different ciphertext y that is distributed identically to a fresh encryption of m. It propose such a

rerandomizable cryptosystem, which is secure against semi-generic adversaries. To improve the

efficiency of the algorithm, a probabilistic trapdoor one way function is presented. This adds

randomness to the proposed work which makes crypto analysis difficult.

2.3.1.2 Neural networks in cryptography:

One more technique that is used in probabilistic encryption is to adopt Neural Networks Guo D

et al 1999, on encryption mechanisms. Neural network techniques are added to probabilistic

encryption to make cipher text stronger. In addition to security it can also be seen that data over

head could be avoided in the conversion process A new probabilistic symmetric probabilistic

encryption scheme based on chaotic attractors of neural networks can be considered. The scheme

is based on chaotic properties of the Over storaged Hopfield Neural Network (OHNN). The

approach bridges the relationship between neural network and cryptography. However, there are

some problems in the scheme:

(1) exhaustive search is needed to find all the attractors;

(2) problem exists on creating the synaptic weight matrix.

2.3.1.3 Knapsack-based crypto systems:

Knapsack-based cryptosystems Baocang Wang et al 2007, had been viewed as the most

attractive and the most promising asymmetric cryptographic algorithms for a long time due to

their NPcompleteness nature and high speed in encryption/decryption. Unfortunately, most of

them are broken for the low-density feature of the underlying knapsack problems. To improve

the performance of the model a new easy compact knapsack problem and propose a novel

knapsack-based probabilistic public-key cryptosystem in which the cipher-text is non-linear with

the plaintext.

2.3.1.4 On Probabilistic Scheme for Encryption Using Nonlinear Codes Mapped

from Z_4 Linear Codes:

Page | 26

Probabilistic encryption becomes more and more important since its ability to against chosen-

cipher text attack. To convert any deterministic encryption scheme into a probabilistic encryption

scheme, a randomized media is needed to apply on the message and carry the message over as an

randomized input Lester S. Hill 1929. Thus nonlinear codes obtained by certain mapping from

linear error-correcting codes are considered to serve as such carrying media. Thus some

algorithms are discussed in literature which is symmetric and probabilistic in nature.

2.4 Numerical Model for data development

2.4.1 Partial differential equations: Partial differential equations to model multiscale

phenomena are ubiquitous in industrial applications and their numerical solution is an

outstanding challenge within the field of scientific computing Suhas V. Patenkar 1991. The

approach is to process the mathematical model at the level of the equations, before discretization,

either removing non-essential small scales when possible, or exploiting special features of the

small scales such as self-similarity or scale separation to formulate more tractable computational

problems. Types of data ,

1.Static: Each data item is considered free from any time based and the inferences that can be

derived from this data are also free of any time based aspects

2.Sequence. In this category of data, though there may not be any explicit reference to time, there

exists a sort of qualitative time based relationship among data values.

3.Time stamped. Here we can not only say that a transaction occurred before another but also the

exact temporal distance between the data elements. Also with the activities being uniformly

spaced on the time parameter.

4.Fully Temporal: In this category, the validity of the data elements is time dependent. The

inferences are necessarily time dependent in such cases.

2.4.2 Numerical Data Analysis

The following are the steps to generate a numerical method for data analysis Raja Ramanna

1990.

Page | 27

2.4.2.1 Discretisation Methods.

The numerical solution of data flow and other related process can begin when the laws governing

these processes are represented in differential equations. The individual differential equations

follow a certain conservation principle. Each equation employs a certain quantity as its

dependent variable and implies that there must be a balance among various factors that influence

the variable. The numerical solution of a differential equation consists of a set of numbers from

which the distribution of the dependent variable can be constructed. It means a numerical method

is equal to a experiment in which a set of experimental values gives a means of the measured

quantity in the domain under study.

Let us suppose that we decide to represent the variation of _ by a polynomial in

x_ = a 0 + a 1 x + a 2 x2 + …………………..a n x n and employ a numerical method to find the

finite number of coefficients a1 , a2……….an. This will enable us to evaluate _, at any location

x by substituting the value of x and the values of a’s in the above equation.

Thus a numerical method treats as its basic unknowns the values of the dependent variable at a

finite number of location called the grid points in the calculation domain. This method includes

the task of providing a set of algebraic equations for these unknowns and of prescribing an

algorithm for solving the equations. A discretisation equation is an algebraic equation connecting

the values of _ for a set of grid points. Such an equation is derived from the differential equation

governing _ and thus expresses the same physical information as the differential information.

That is only a few grid points are represented in the given differential equation. The value of _ at

a grid point is represented by values at its neighborhood values. As more and more grid points

are considered, the solutions of discritization equations reach the exact solution of the

corresponding differential equations.

2.4.2.2 Control Volume Formulation.

The considered area is divided into a number of grid points each with control volumes

surrounding each grid point. The differential equation is integrated over each control volume

piecewise to identify the data values. The feature of the control volume formulation is that the

output data to the control volume is equal to input data values of the control volume. It means

Page | 28

that conservation principle is identified over the control volume. This characteristic exists for any

number of grid points. Thus even the course grid solution exhibits exact integral balances.

2.4.2.3 Steady One Dimensional data flow.

Steady state one-dimensional equation is given by _./_x(k. _T/_x) +s =0. 0 (eq. 1) where k & s

are constants. To derive the discretisation equation we shall employ the grid point cluster. We

focus attention on grid point P, which has grid points E, W as neighbors. For one dimensional

problem under consideration we shall assume a unit thickness in y and z directions. Thus the

volume of control volume is delx*1*1. Thus if we integrate the above equation over the control

volume, we get (K _.T/_X)e – (K _T/_X)w + _S _X = 0.0 (eq. 2)

If we evaluate the derivatives . _T/ _X in the above equation from piece wise linear profile , the

resulting equation will be Ke(Te – Tp)/(_X)e – Kw(Tp – Tw)/(_X)w + S *del x=0.0 where S is

average value of s over control volume. (eq. 3)

This leads to discretisation equation

apTp = aeTe + awTw +b Where ae= Ke/_Xe (eq. 4)

aw = Kw/dXw

ap= ae+aw-sp.delX

b=se.delX .

2.4.2.4 Grid Spacing

For the grid points the distances (dX)e and (dX)w may be or may not be equal. For simplicity we

assume the grid spacing as equal on the left side and right side of grid points. Indeed, the use of

non uniform grid spacing is often desirable, for it enables us to deploy more efficiently. Infact we

shall obtain an accurate solution only when the grid is sufficiently fine. But there is no need to

employ a fine grid in regions where the dependent variable T changes slowly with X. On the

other hand, a fine grid is required where the T_X variation is steep. The number of grid points

and the way they are distributed gives the nature of problem to be solved. Theoretical

calculations using only a few grid points specify a convenient way of learning.

2.4.2.5 Boundary Conditions

Page | 29

There is one grid point on each of the two boundaries. The other grid points are called internal

points, around each of which a control volume is considered. Based on the grid points at

boundary, internal grid points are evaluated by Tri diagonal matrix algorithm.

2.4.2.6 Solution Of Linear Algebraic Equations

The solution of the discretisation equations for the one-dimensional situation can be obtained by

the standard Gaussian elimination method. Because of the particularly simple form of equations,

the elimination process leads to a delightfully convenient algorithm. For convenience in

presenting the algorithm, it is necessary to use somewhat different nomenclature. Suppose the

grid points are numbered 1,2,3…ni where 1 and ni denoting boundary points.

The discretisation equation based on equations (1-4) can be written as

Ai Ti + BiTi+1 +CiT i-1 = Di (eq. 5)

For I = 1,2,3………….ni. Thus the data value T is related to neighboring data values T i+1 and T

i-1.

For the given problem

C1=0 and Bn=0;

These conditions imply that T1 is known in terms of T2. The equation for I=2, is a relation

between T1, T2 & T3. But since T1 can be expressed in terms of T2 , this relation reduces to a

relation between T2 and T3. This process of substitution can be continued until Tn-1 can be

formally expressed as Tn. But since Tn is known we can obtain Tn-1.This enables us to begin

back substitution process in which Tn-2,Tn-3………….T3,T2 can be obtained.

For this tridiogonal system , it is easy to modify the Gaussian elimination procedures to take

advantage of zeros in the matrix of coefficients. Referring to the tridiogonal matrix of

coefficients above, the system is put into a upper triangular form by computing new Ai.

Ai = Ai – (C i-1 /Ai)* Bi where i = 2,3……………ni. (eq. 6)

Di= Di – (C i-1 /Ai) * Di (eq. 7)

Page | 30

Then computing the unknowns from back substitution

Tn = Dn / An. (eq. 8)

Then Tn = Dk – Ak * T k+1 / Ak, k= ni-1, ni-2…3,2,1. (eq. 9)

Thus a Sequence of values are generated using tridiogonal matrix algorithm which can

be used as sub key in cryptographic techniques.

2.5 Key Distribution Mechanism

In most of the schemes, a key distribution centre (KDC) is employed which handles the task of

key distribution for the participating parties. Generally two mechanisms are employed Donavan

G.Govan et al 2008. In the first mechanism user A, requests KDC for a session with another

user say, B. Initially the KDC sends session key encrypted with private key of A, to the user A.

This encrypted session key is appended with encrypted session key by private key of B. On

receiving this User A, gets session key and encrypted message with private key of B. This

encrypted message is sent to B, where B decrypts it and gets the session key. Now both A & B

are in hold of session key which they can use for secured transmission of data. Other wise it is

the KDC which sends encrypted session key to the participating parties based on the request of

user.

In the second mechanism, the scenario assumes that each user shares a unique master key with

the key distribution centre. In such a case, the session key is encrypted with the master key and

sent to participating parties. A more flexible scheme, referred to as the control vector Donavan

G.Govan et al 2008. In this scheme, each session key has an associated control vector consisting

of a number of fields that specify the uses and restrictions for that session key. The length of the

control vector may vary.

As a first step, the control vector is passed through a hash function that produces a value which is

equal to encryption key length. The hash value is XOR ed with the master key to produce an

output that is used as key to encrypt the session key. When the session key is delivered to the

user the control vector is delivered in its plain form. The session key can be recovered only by

Page | 31

using both master key that the user shares with the KDC and the control vector. Thus the linkage

between session key & control vector is maintained. Some times keys get garbled in

transmission. Since a garbled key can mean mega bytes of unacceptable cipher text, this sis a

problem. All keys should be transmitted with some kind of error detection and correction bits.

This is one way errors of key can be easily detected and if required the key can be reset. One of

the most widely used methods is to encrypt a constant value with the key and to send the first 2

to 4 bytes of that cipher text along with the key. At the receiving end, the same thing is being

done. If the encrypted constants match then the key has been transmitted with out error. The

chance of undetected error ranges from one in 2 16 to one in 2 32. The limitation with this

approach is in addition to the key, even the constant has to be transmitted to participating parties.

Some times the receiver wants to check if a particular key he has, is the correct decryption key.

The naïve approach is to attach a verification block, a known header to the plain text message

before encryption. At the receiver’s side, the receiver decrypts the header and verifies that it is

correct. This works, but it gives intruder a known plain text to help crypto analyze the system.

Page | 32

Chapter -3

ALGORITHM AND EXAMPLES OF GOLDWASSER-MICALI SCHEME

3.1 History

In 1984 Shafi Goldwasser and Silvio Micali theorized the idea of probabilistic cryptography [6].

Their scheme gave the ability to encrypt the same text in many different ways without changing

the modulus. This scheme was one of the first to be semantically secure, if not the first. Semantic

security is defined as the ciphertext not giving any useful information about the plaintext in

polynomial time, except possibly the length [20]. This scheme introduced some new ideas, that

helped to inspire a new line of probabilistic schemes. In fact, the Paillier scheme seems to have

emerged from this line. Although it is significant for this purpose, Goldwasser-Micali doesn’t

seem to have been studied much because of its slow speed and huge expansion. For these reason

it is doubtful that it could be used for encrypting normal amounts of text. However, the scheme

does well at bit encryption because of its ability to encrypt bits to different values. For this reason

the scheme may find some practical uses.

3.2 Mathematical Background

Goldwasser-Micali encryption uses the quadratic residuosity problem as the basis for the

encryption. Assuming this problem is intractable then this scheme is secure. Of course, like most

encryption schemes, this has not been proven secure but seems to be a good assumption.

A quadratic residue is simply an integer in Zn
* that for some x  N is equivalent to x2 mod n

[15]. Since we are in mod n, the integers can be quadratic residues in several ways. Most are

values that would never be squares without evaluating with the modulus.

To understand the quadratic residues, we first need to understand the concepts of the Legendre

and Jacobi symbols [15]. The Legendre symbol can easily be found with the formula:

Page | 33

If the value n is not prime then one has the Jacobi symbol (a/n) (which looks just like the

Legendre symbol). If the factorization of n = pe1
1 p

e2
2 p

ek
k the Jacobi symbol can be defined

with Legendre symbols as:

The quadratic residuosity problem is defined as the following.

Definition 1 Given integers n and a  Jn, where Jn is defined as all a  Zn
* whose Jacobi symbol is

1, find whether or not a is a quadratic residue modulo n.

To solve the Legendre symbol the value of n needs to be factored and then the equation can be

solved with the resulting Jacobi symbols. The Jacobi symbols can be solved by the above method

and the solutions can be multiplied together for the final solution.

With the mathematical background of the quadratic residuosity problem, we are now able to

create the keys needed for encryption, and then encrypt and decrypt a message. The following is

the method used for generating the public and private keys.

Steps for Key Generation

1. Select two primes p and q that are about the same size.

2. Calculate modulus n = pq, the product of two primes.

3. Select y  Zn that is also a pseudosquare mod n. A pseudosquare is a quadratic non-residue

modulo n with (a/n) = 1.

4. We now have the public key (n, y) and the private key (p, q)

The key generation is mostly straightforward for this scheme and resembles other public keys

schemes like RSA. The tricky part is creating the pseudosquare y. From the name, one can infer

that this value will look like a square. In this case, the Jacobi symbol (a/n) = 1 is a test to see if a

is quadratic residue modulo n. But just because the Jacobi symbol is 1 doesn’t mean it is a

quadratic residue. There is also a chance that that this value is not a quadratic residue and it is

precisely these values that represent pseudosquares. There is a good trick for creating these

values when n is a composite of two primes p and q [10].

Page | 34

Steps for Finding Pseudosquare

1. Find two quadratic non-residues, a mod p and b mod q.

2. You want to find the number y mod n (remember n = pq) where y ≡ a mod p and also y ≡ b

mod q. This can be done using Chinese Remaindering.

3. We know y is a quadratic non-residue mod n. This is because a mod p is in Qp (Q is

the set of quadratic non-residues) and b mod q is in Qq , which implies they are both quadratic

non-residues mod n (see fact 2.137 in [10]). Remember that y ≡ a mod p and y ≡ b mod q.

4. We also know by the properties of Jacobi and Legendre symbols that the Jacobi symbol(a/n) =

(a/p)(b/q) = (-1)(-1) = 1, since the Legendre symbol of quadratic non-residues must be -1.

5. From all the above we can conclude we have a pseudosquare, since the Legendre symbol (a/p)

= 1 and the Jacobi symbol (a/n) = 1.

Now that we have the public and private keys we can see how to do encryption with Goldwasser-

Micali. In our case Bob is encrypting a message m for Alice into a ciphertext c. Bob has received

the public key (n, y) that was generated by Alice.

Steps for Encryption

1. Convert message m to a binary string where m = m1m2m3...mt and t is the length of string

and each mi is either 0 or 1.

2. For i = 0 to t

(a) Pick a random value x  Zn*.

(b) If mi = 1 then ci = yx2 mod n and if mi = 0 then ci = x2 mod n.

3. The encrypted values ci are then placed in c where c = c1c2c3...ct where again t is the size c.

It is clear from the encryption algorithm that this is an inefficient scheme and some-what

simplistic. Only one bit can be encrypted at a time and the expansion is very great. Even with

these characteristics I am fascinated that with the randomness one can encrypt 0’s and 1’s in so

Page | 35

many ways and yet this is considered secure. It makes you wonder if there are other easier

methods to encrypt each bit, since all you need is two different outcomes. This type of scheme

could be usable when doing bit encryption but would take too long for normal size encryption.

The decryption of ciphertext c of length t is as follows using the private key (p, q).

Steps for Decryption

1. For i = 0 to t

(a) Find the Legendre symbol li = (ci/p).

(b) If li = 1 then mi = 0, else mi = 1.

2. The decrypted message is the string m = m1m2m3...mt.

The decryption process, as you can see, is as simple as figuring out if ci was encrypted as

quadratic residue modulo n or if it was encrypted as a pseudosquare. If ci is encrypted as x2 mod

n then we obviously get a quadratic residue mod n, since that is the definition of a quadratic

residue. If ci = yx2 then we must have a pseudosquare. This is because the Jacobi symbol of y is (

y/n) = −1 and the Jacobi symbol of x2 is (x2/n) = 1. Therefore we get (−1)(1) = −1 which

implies that yx2 is a pseudosquare modn. To quickly show whether or not ci is a quadratic

residue modulo n, we use a fact stated in [10] in section 2.137, which says that if ci is a quadratic

residue modulo q or modulo p then we know it is a quadratic residue modulo n. This can be done

easily, since p and q are primes, with either Legendre symbol (ci/p) or (ci/q).

The ability to find if a number is a quadratic residue modulo n using its factors p and q is

especially useful because no one knows a method of finding quadratic residue without these

factors. Since an effective way to factor large numbers is unknown, this scheme is considered

secure. The security of this scheme relies on the assumption that the quadratic residuosity

problem is difficult, but for now it seems to be secure. If a person were able to intercept a

message, all they would see would be pseudosquares and quadratic residues modulo n. Assuming

the value of n is large enough, they would not be able to get the factors p and q and would not be

able to calculate the Legendre symbol.

Below is a simple example of the Goldwasser-Micali scheme. You can tell from the size of the

Page | 36

numbers in the public and private keys that this is not realistic for a truely secure example. But

the mathematics are the same and help to cement in your mind how the scheme works. The steps

shown in the example below correspond to the algorithms above, so you can compare.

Key Generation

1. p = 71, q = 61.

2. n = 4331.

The equivalent of both these numbers modn. We know the gcd(p, q) = 1 since they are both

prime, so we can first use the formula k ≡ (a − b)p−1 (mod q). Plugging in the numbers we get k

≡ (23 − 17)71−1 (mod 61) ≡ 25 (mod 61). Then we can substitute k into b + pk (mod n) giving us

17 + 71 * 25 ≡ 1792 (mod 4331). This means we can use y = 1792 as our pseudosquare mod n.

This gives us the public key (n, y) = (4331, 1792) and the private key (p, q) = (71, 61).

Encryption

We will now encrypt the message m = 9. This means m = 1001 in binary, which is a good

number to encrypt since there are two 0’s and two 1’s to encrypt. Obviously we can encrypt

much bigger numbers but we would just be encrypting the same two things over and over in a

certain order. Having two examples of each should be sufficient to understand the process.

• m1 = 1

We choose x  Zn
* so x = 12.

m1 = 1 so c1 ← yx2 mod n which gives us c1 =

1792 * 122 = 2512 mod 4331.

• m2 = 0

We choose random x = 22.

m2 = 0 so c2 ← x2 mod n which gives us c2 =

222 = 484 mod 4331.

• m3 = 0

We choose random x = 81.

m3 = 0 so c3 ← x2 mod n which gives us c3 =

Page | 37

812 = 1378 mod 4331

• m4 = 1

We choose random x = 3001.

m4 = 1 so c4 ← yx2 mod n which gives us c4 =

1792 * 30012 = 2421 mod 4331

This gives us the ciphertext c = (2519, 484, 1378, 2421) that is sent to Alice to be decrypted.

Decryption

• c1 = 2519

We calculate the Legendre symbol (c1/p) ≡ c1
(p-1)mod p

This gives us (2519/71) = 2519((71−1)/2) mod 71 = −1.

Because we get −1, m1 = 1.

c2 = 484

The Legendre symbol (484/71) ≡ 484((71−1/2) mod 71 = 1.

Since we get 1, m2 = 0.

• c3 = 1378

The Legendre symbol (1378/71) ≡ 1378((71−1/2) mod 71 = 1.

Since we get 1, m3 = 0.

c4 = 1238

The Legendre symbol (1238/71) ≡ 1238((71−1/2) mod 71 = −1.

Since we get −1, m4 = −1.

As you can see when we concatenate m together again we get m = 1001 in binary or m = 9,

which is what we started with.

3.3 Summary of Scheme

As you can see from the information provided, this scheme works and appears to be semantically

secure. The problem is that the scheme has a message expansion around lg2 n [10]. The value of

n would need to be hundreds of bits long to prevent factorization and finding the private key.

This means that each bit of the ciphertext would need to be expanded to just smaller than n. In an

Page | 38

example that was reasonably secure this would make the ciphertext hundreds of times larger than

the original message. Because of this fact, this scheme is not used practically but it may become

useful for encrypting small amounts, such as invidual bits. The other probabilistic schemes

covered later have much potential for normal encryption than this one.

Page | 39

Chapter - 4

SOFTWARE TOOL (CODE AND SCREESHOTS)

4.1 Screenshots

4.1.1 This is the main screen which will be visible as the first page. We just have to enter

message which is to be encrypted in first test field (Message to encrypt). The public key and

private key which are already defined are given and shown.

Page | 40

4.1.2

The given screen is showing the result of encrypted message which is coming after calculation of

message using public key and private key. As the algorithm works on binary conversion of data

so binary conversion of message and encrypted message is also shown for simplicity and

explanation. This will be shown on clicking on encrypt button.

Page | 41

4.1.3

On clicking on decrypt button following screen will be shown after decrypting of the message.

Page | 42

4.2 Code of the application

/*

 * To change this license header, choose License Headers in Project Properties.

 * To change this template file, choose Tools | Templates

 * and open the template in the editor.

 */

package nishu;

/**

 *

 * @author Nishu

 */

public class MainFrame extends javax.swing.JFrame {

 String message;

 /**

 * Creates new form MainFrame

 */

 public MainFrame() {

 initComponents();

 }

 /**

 * This method is called from within the constructor to initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is always

 * regenerated by the Form Editor.

 */

 @SuppressWarnings("unchecked")

 // <editor-fold defaultstate="collapsed" desc="Generated Code">

 private void initComponents() {

 jLabel5 = new javax.swing.JLabel();

Page | 43

 jPanel1 = new javax.swing.JPanel();

 jTextField1 = new javax.swing.JTextField();

 jLabel1 = new javax.swing.JLabel();

 jScrollPane1 = new javax.swing.JScrollPane();

 jTextArea1 = new javax.swing.JTextArea();

 jLabel2 = new javax.swing.JLabel();

 jLabel3 = new javax.swing.JLabel();

 jLabel4 = new javax.swing.JLabel();

 jLabel6 = new javax.swing.JLabel();

 jLabel7 = new javax.swing.JLabel();

 jTextField2 = new javax.swing.JTextField();

 jTextField3 = new javax.swing.JTextField();

 jLabel9 = new javax.swing.JLabel();

 jScrollPane2 = new javax.swing.JScrollPane();

 jTextArea2 = new javax.swing.JTextArea();

 jPanel2 = new javax.swing.JPanel();

 jButton1 = new javax.swing.JButton();

 jButton2 = new javax.swing.JButton();

 jPanel3 = new javax.swing.JPanel();

 jTextField4 = new javax.swing.JTextField();

 jLabel8 = new javax.swing.JLabel();

 jLabel5.setText("jLabel5");

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 jPanel1.setBorder(javax.swing.BorderFactory.createTitledBorder(null, "Encrypt",

javax.swing.border.TitledBorder.CENTER, javax.swing.border.TitledBorder.TOP, new

java.awt.Font("Tahoma", 0, 14), new java.awt.Color(204, 0, 0))); // NOI18N

 jPanel1.setToolTipText("Encrypt ");

 jPanel1.setName("encryptPanel"); // NOI18N

Page | 44

 jTextField1.setName("txtMessage"); // NOI18N

 jLabel1.setText("Message to Encrypt");

 jTextArea1.setEditable(false);

 jTextArea1.setColumns(20);

 jTextArea1.setRows(5);

 jTextArea1.setName("txtBinary"); // NOI18N

 jScrollPane1.setViewportView(jTextArea1);

 jLabel2.setText("Binary Conversion of Message");

 jLabel3.setText("Public Key");

 jLabel6.setText("Private Key");

 jTextField2.setEditable(false);

 jTextField2.setText("4321, 1765");

 jTextField2.setName("txtPublic"); // NOI18N

 jTextField2.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jTextField2ActionPerformed(evt);

 }

 });

 jTextField3.setEditable(false);

 jTextField3.setText("70,64");

 jTextField3.setName("txtPrivate"); // NOI18N

 jLabel9.setText("Encrypted Message");

Page | 45

 jTextArea2.setColumns(20);

 jTextArea2.setRows(5);

 jScrollPane2.setViewportView(jTextArea2);

 javax.swing.GroupLayout jPanel1Layout = new javax.swing.GroupLayout(jPanel1);

 jPanel1.setLayout(jPanel1Layout);

 jPanel1Layout.setHorizontalGroup(

 jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(jPanel1Layout.createSequentialGroup()

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING,

jPanel1Layout.createSequentialGroup()

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(jPanel1Layout.createSequentialGroup()

 .addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE,

Short.MAX_VALUE)

 .addComponent(jLabel7, javax.swing.GroupLayout.PREFERRED_SIZE,

105, javax.swing.GroupLayout.PREFERRED_SIZE))

 .addGroup(jPanel1Layout.createSequentialGroup()

 .addContainerGap()

 .addComponent(jLabel9, javax.swing.GroupLayout.PREFERRED_SIZE,

116, javax.swing.GroupLayout.PREFERRED_SIZE)

 .addGap(0, 0, Short.MAX_VALUE)))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)

 .addComponent(jScrollPane2, javax.swing.GroupLayout.PREFERRED_SIZE,

590, javax.swing.GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

Page | 46

 .addComponent(jLabel4))

 .addGroup(jPanel1Layout.createSequentialGroup()

 .addContainerGap()

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(jPanel1Layout.createSequentialGroup()

 .addComponent(jLabel2, javax.swing.GroupLayout.DEFAULT_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

 .addGap(18, 18, 18)

 .addComponent(jScrollPane1,

javax.swing.GroupLayout.PREFERRED_SIZE, 592,

javax.swing.GroupLayout.PREFERRED_SIZE))

 .addGroup(jPanel1Layout.createSequentialGroup()

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addComponent(jLabel3, javax.swing.GroupLayout.PREFERRED_SIZE,

62, javax.swing.GroupLayout.PREFERRED_SIZE)

 .addComponent(jLabel6, javax.swing.GroupLayout.PREFERRED_SIZE,

62, javax.swing.GroupLayout.PREFERRED_SIZE))

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED,

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING,

false)

 .addComponent(jTextField3)

 .addComponent(jTextField2, javax.swing.GroupLayout.DEFAULT_SIZE,

592, Short.MAX_VALUE)))

 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING,

jPanel1Layout.createSequentialGroup()

Page | 47

 .addComponent(jLabel1, javax.swing.GroupLayout.DEFAULT_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

 .addGap(166, 166, 166)

 .addComponent(jTextField1,

javax.swing.GroupLayout.PREFERRED_SIZE, 592,

javax.swing.GroupLayout.PREFERRED_SIZE)))))

 .addContainerGap())

);

 jPanel1Layout.setVerticalGroup(

 jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(jPanel1Layout.createSequentialGroup()

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELIN

E)

 .addComponent(jTextField1, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

 .addComponent(jLabel1))

 .addGap(18, 18, 18)

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addComponent(jScrollPane1, javax.swing.GroupLayout.PREFERRED_SIZE, 64,

javax.swing.GroupLayout.PREFERRED_SIZE)

 .addComponent(jLabel2))

 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED,

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING,

jPanel1Layout.createSequentialGroup()

 .addComponent(jLabel4)

 .addGap(84, 84, 84))

Page | 48

 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING,

jPanel1Layout.createSequentialGroup()

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.TRAILING

)

 .addComponent(jLabel3)

 .addGroup(javax.swing.GroupLayout.Alignment.LEADING,

jPanel1Layout.createSequentialGroup()

 .addGap(2, 2, 2)

 .addComponent(jTextField2,

javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,

javax.swing.GroupLayout.PREFERRED_SIZE)))

 .addGap(18, 18, 18)

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELIN

E)

 .addComponent(jLabel6)

 .addComponent(jTextField3, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(jPanel1Layout.createSequentialGroup()

 .addGap(42, 42, 42)

 .addComponent(jLabel7))

 .addGroup(jPanel1Layout.createSequentialGroup()

 .addGap(18, 18, 18)

.addGroup(jPanel1Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addComponent(jLabel9)

Page | 49

 .addComponent(jScrollPane2,

javax.swing.GroupLayout.PREFERRED_SIZE, 72,

javax.swing.GroupLayout.PREFERRED_SIZE))))

 .addGap(72, 72, 72))))

);

 jPanel2.setBorder(javax.swing.BorderFactory.createTitledBorder(null, "Action",

javax.swing.border.TitledBorder.CENTER, javax.swing.border.TitledBorder.TOP, new

java.awt.Font("Tahoma", 0, 11), new java.awt.Color(0, 51, 51))); // NOI18N

 jButton1.setText("Encrypt");

 jButton1.setName("btnEncrypt"); // NOI18N

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton1ActionPerformed(evt);

 }

 });

 jButton2.setText("Decrypt");

 jButton2.setName("btnDecrypt"); // NOI18N

 jButton2.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton2ActionPerformed(evt);

 }

 });

 javax.swing.GroupLayout jPanel2Layout = new javax.swing.GroupLayout(jPanel2);

 jPanel2.setLayout(jPanel2Layout);

 jPanel2Layout.setHorizontalGroup(

 jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(jPanel2Layout.createSequentialGroup()

Page | 50

 .addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

 .addComponent(jButton1)

 .addGap(49, 49, 49)

 .addComponent(jButton2)

 .addGap(323, 323, 323))

);

 jPanel2Layout.setVerticalGroup(

 jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING,

jPanel2Layout.createSequentialGroup()

 .addGap(0, 0, Short.MAX_VALUE)

.addGroup(jPanel2Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELIN

E)

 .addComponent(jButton1)

 .addComponent(jButton2)))

);

 jPanel3.setBorder(javax.swing.BorderFactory.createTitledBorder(null, "Decrypt",

javax.swing.border.TitledBorder.CENTER, javax.swing.border.TitledBorder.TOP, new

java.awt.Font("Tahoma", 0, 11), new java.awt.Color(255, 51, 0))); // NOI18N

 jTextField4.setName("txtDecrypt"); // NOI18N

 jLabel8.setText("Decryped Data");

 javax.swing.GroupLayout jPanel3Layout = new javax.swing.GroupLayout(jPanel3);

 jPanel3.setLayout(jPanel3Layout);

 jPanel3Layout.setHorizontalGroup(

 jPanel3Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

Page | 51

 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING,

jPanel3Layout.createSequentialGroup()

 .addContainerGap()

 .addComponent(jLabel8, javax.swing.GroupLayout.DEFAULT_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(jTextField4, javax.swing.GroupLayout.PREFERRED_SIZE, 588,

javax.swing.GroupLayout.PREFERRED_SIZE)

 .addGap(18, 18, 18))

);

 jPanel3Layout.setVerticalGroup(

 jPanel3Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(jPanel3Layout.createSequentialGroup()

 .addContainerGap()

.addGroup(jPanel3Layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELIN

E)

 .addComponent(jTextField4, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

 .addComponent(jLabel8))

 .addContainerGap(21, Short.MAX_VALUE))

);

 javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane());

 getContentPane().setLayout(layout);

 layout.setHorizontalGroup(

 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addComponent(jPanel1, javax.swing.GroupLayout.DEFAULT_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

 .addComponent(jPanel3, javax.swing.GroupLayout.DEFAULT_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

Page | 52

 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING,

layout.createSequentialGroup()

 .addComponent(jPanel2, javax.swing.GroupLayout.DEFAULT_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

 .addContainerGap())

);

 layout.setVerticalGroup(

 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(layout.createSequentialGroup()

 .addComponent(jPanel1, javax.swing.GroupLayout.PREFERRED_SIZE, 303,

javax.swing.GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)

 .addComponent(jPanel2, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED,

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

 .addComponent(jPanel3, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

 .addGap(38, 38, 38))

);

 pack();

 }// </editor-fold>

 private void jTextField2ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 }

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling ecode here:

 message=jTextField1.getText();

Page | 53

 String binaryMessage="";

 byte[] bytes = message.getBytes();

 StringBuilder binary = new StringBuilder();

 for (byte b : bytes)

 {

 int val = b;

 for (int i = 0; i < 8; i++)

 {

 binary.append((val & 128) == 0 ? 0 : 1);

 val <<= 1;

 }

 binary.append(' ');

 }

 binaryMessage=binary.toString();

 jTextArea1.setText(binaryMessage);

 jTextArea2.setText(encryptedMessage());

 }

 private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 jTextField4.setText(decryptedMessage());

 }

 /**

 * @param args the command line arguments

 */

 public static void main(String args[]) {

 /* Set the Nimbus look and feel */

 //<editor-fold defaultstate="collapsed" desc=" Look and feel setting code (optional) ">

 /* If Nimbus (introduced in Java SE 6) is not available, stay with the default look and feel.

Page | 54

 * For details see http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html

 */

 try {

 for (javax.swing.UIManager.LookAndFeelInfo info :

javax.swing.UIManager.getInstalledLookAndFeels()) {

 if ("Nimbus".equals(info.getName())) {

 javax.swing.UIManager.setLookAndFeel(info.getClassName());

 break;

 }

 }

 } catch (ClassNotFoundException ex) {

java.util.logging.Logger.getLogger(MainFrame.class.getName()).log(java.util.logging.Level.SE

VERE, null, ex);

 } catch (InstantiationException ex) {

java.util.logging.Logger.getLogger(MainFrame.class.getName()).log(java.util.logging.Level.SE

VERE, null, ex);

 } catch (IllegalAccessException ex) {

java.util.logging.Logger.getLogger(MainFrame.class.getName()).log(java.util.logging.Level.SE

VERE, null, ex);

 } catch (javax.swing.UnsupportedLookAndFeelException ex) {

java.util.logging.Logger.getLogger(MainFrame.class.getName()).log(java.util.logging.Level.SE

VERE, null, ex);

 }

 //</editor-fold>

 /* Create and display the form */

 java.awt.EventQueue.invokeLater(new Runnable() {

Page | 55

 public void run() {

 new MainFrame().setVisible(true);

 }

 });

 }

 // Variables declaration - do not modify

 private javax.swing.JButton jButton1;

 private javax.swing.JButton jButton2;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JLabel jLabel2;

 private javax.swing.JLabel jLabel3;

 private javax.swing.JLabel jLabel4;

 private javax.swing.JLabel jLabel5;

 private javax.swing.JLabel jLabel6;

 private javax.swing.JLabel jLabel7;

 private javax.swing.JLabel jLabel8;

 private javax.swing.JLabel jLabel9;

 private javax.swing.JPanel jPanel1;

 private javax.swing.JPanel jPanel2;

 private javax.swing.JPanel jPanel3;

 private javax.swing.JScrollPane jScrollPane1;

 private javax.swing.JScrollPane jScrollPane2;

 private javax.swing.JTextArea jTextArea1;

 private javax.swing.JTextArea jTextArea2;

 private javax.swing.JTextField jTextField1;

 private javax.swing.JTextField jTextField2;

 private javax.swing.JTextField jTextField3;

 private javax.swing.JTextField jTextField4;

 // End of variables declaration

}

Page | 56

Chapter 5

Conclusion and Future work

5.1 Summary

This study represents the importance of Encryption of data for storage and transmission. The

significance of encrypted data can be identified in light of the various type of applications and

globalization of communication. The advantages of encrypting data manifest themselves in the

form of security & confidentiality in real time applications. Encryption of data is of particular

significance in applications like email, ecommerce, e-cash where highly vulnerable

communication lines is accessed for transmission of highly volatile data.

The study traces the development of various probabilistic encryption algorithms models in a real

time environment in all their breath taking diversity and breakthroughs in Chapters 2. Discusses

various aspects of encryption with review of literature. A lots of literature were reviewed for

discussed in the chapter.

The chapter 3 pays special emphasis on probabilistic method of encryption, its algorithm,

methods and examples.

In chapter 4 we have implemented various encryption algoritms in java. Various screenshots

with code is given in this chapter. The code is developed using IDE NetBeans8.

5.2 Future Work

The present work is using the method given by Goldwasser-Micali Scheme. A lots of different

researchers have been working on the probabilistic approach of encryption and decryption. A lots

of research can be done on all these methods of probabilistic approaches.

The proposed system is using Java1.8 for coding. The user interface is designed in Swing. A lots

of researchers have worked on concept of probabilistic approach of encryption and decryption.

Some of them have designed good algorithm. But a very least number of researchers have taken

it to implementation level. Our focus of the work was to implement one of the best models, in

Page | 57

which the data can be moved in secure and safe way. We tried to study various language

specifications. Java has implemented one of the best security model so we used java security for

designing the tool.

For security of encrypted data, a lots of complex algorithms were suggested by researchers. Most

of these algorithms were very effective but these algorithms are a bit complex in understanding

and implementation. Overall the proposed tool is very nice, compact and effective tool for

implementation and understanding of probabilistic approach of encryption and decryption. Also

the tool is developed by using complete object oriented methodology which can later be

extended as per need.

The work of probabilistic approach of encryption and decryption can never ends. This is the race

condition in between hackers and these methods. Although java is using Base64 method which is

one of the best methods as on date but still it is not destination. As and when new methodologies

are evaluated, it is essential to update the tool as per requirement

Our ability to discover hidden information during our investigations is vital, especially as new

and innovative methods continue to evolve. During the past decade, data hiding technologies

have advanced from limited use to ubiquitous deployment. With the rapid advancement of smart

mobile devices, the need to protect valuable proprietary information has generated a plethora of

new methods and technologies for both good and evil. Most dangerous among these are those

that employ hiding methods along with cryptography, thus providing a way to both conceal the

existence of hidden information while strongly protecting the information even if the channel is

discovered.

Many vendors provide excellent technologies for protecting the privacy of information for the

desktop. In addition, many of the latest smart mobile platforms (Android and iPhone) include

built-in cryptographic capabilities. What is more dangerous and difficult to discover/decipher are

data hiding methods that exploit multimedia and protocol weaknesses to both hide and

communicate covertly. These new techniques provide hybrid solutions that combine the best of

Page | 58

cryptography with the best of probabilistic approach of encryption and decryption. The interest,

innovation, and advancement of these threats continue to go unchecked for the most part.

The present study can be extended for the use of different mobile technologies like window

mobile, android, iphone etc. Also the study can be extended for audio and vedio type of media.

In the present system, we are using encryption methods which are given by java only. Later on,

the tool and such applications can be developed in almost all the available technologies. As java

is open source and source code of encryption/decryption methods are available, these

methods/classes can be re-written to extend their algorithm and our new ideas can be included in

these methods.

Page | 59

REFERENCES

1. Shashi Bala et al 2015, International Journal of Advanced Research in Computer

Science and Software Engineering, Volume 5, Issue 6, June 2015, ISSN: 2277 128X.

2. Pinki Singh et al 2015, Encryption Algorithms With Emphasis On Probabilistic

3. Encryption & Time Stamp In Network Security, International Journal of Research in

Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-

4599 Vol. 3, Issue 5, May 2015, 39-46.

4. Dheeraj et al 2015, Goldwasser-Micali Cryptosystem.

5. Arun Singh Chouhan et al 2014, Design and Performance Analysis of new Cryptographic

Algorithm for Wireless Sensor Networks & Broadcasting Applications Security,

International Journal of Application or Innovation in Engineering & Management

(IJAIEM), Volume 3, Issue 11, November 2014, ISSN 2319 - 4847 .

6. Sage.math.Washington.edu/home/jetchev/Public.html/docs/jetchev-talk.ppt- Broadcast

encryption schemes.

7. Brassard G.: Modern Cryptology , a tutorial lecture Notes on computer science , (325)

,(spring-verlas) .

8. Bruce Scheneier: Applied cryptography (John Wiley & sons (ASIA) Pvt. Ltd.

9. Carlone Fontaine & Fabien Galand: A Survey of Homomorphic Encryption for non

specialists, EURASIP Journal,Vol 07, Article 10.

10. Aldrin W. Wanambisi et al 2013, Journal of Natural Sciences Research, ISSN 2224-3186

(Paper) ISSN 2225-0921 (Online) Vol.3, No.1, 2013.

11. Vinod Vaikuntanathan 2013, Computing on Encrypted Data.

12. Nishu Sharma et al, Performance rating of new encryption algorithms with prominence

on probabilistic encryption, International Journal of Engineering Technology and

Management (IJETM), Volume 2: Issue 1: Page No. 16-19.

13. Sanjib Kumar Baral et al, Development of time-stamped signcryption scheme and its

application in e-cash system.

Page | 60

14. A.V.N.Krishna et al, A New Non Linear, Time Stamped & Feed Back Model Based

Encryption Mechanism with Acknowledgement Support, International Journal of

Advancements in Technology, ISSN 0976-4860.

15. Stuart Haber et al, HowtoTime-StampaDigitalDocument.

16. A.V.N.Krishna, Probabilistic Encryption Based ECC Mechanism, International Journal

of Advancements in Technology, ISSN 0976-4860.

17. Dogan Kesdogan et al, Stop-And-Go-MIXes Providing Probabilistic Anonymity in an

Open System.

18. Amjay Kumar, Ajay Kumar: Development of New Cryptographic Construct using

Palmprint Based Fuzzyvoult, EURASIP Journal on Adv. In Signal Processing, Vol 21, pp

234-238, 2009

19. Bluekrypt 2009: Cryptographic Key length Recommendations,

http://www.keylength.com

20. Hamid Mirvazri, Kashmiran Jumari Mahamod Ismail, Zurina Mohd. Hanapi: Message

based Random Variable Length Key Encryption Algorithm, Journal of Computer

Science, pp 573-578, 2009.

21. Hianyi Hu, Gufen Znu, Guanning Xu: Secret Scheme for Online Banking based on Secret

key Encryption, Second International Workshop on Knowledge Discovery & Data

Mining, Jan 23-25 2009.

22. Kaiping Xue: Study of improved key Distribution Mechanisms based on two length

structure for wireless sensor networks, International conference on adv. Information

Technology, 2008.

23. Donavan G.Govan, Nathen Lewis: Using Trust for Key Distribution & Route Selection in

Wireless Sensor Networks, International Conference on Network Operations &

Management, IEEE Symposium 2008, PP 787-790.

24. Donavan G.Govan, Nathen Lewis: Using Trust for Key Distribution & Route Selection in

Wireless Sensor Networks, International Conference on Network Operations &

Management, IEEE Symposium 2008, PP 787-790.

25. E.C.Park, I.F.Blake: Reducing communication overhead of Key Distribution Schemes for

Wireless Sensor Networks: Computer Communications & Networks, ICCCN 2007, pp

1345-1350.

Page | 61

26. Baocang Wang, Qianhong Wu, Yupu Hu: A Knapsack Based Probabilistic Encryption

Scheme, On Line March 2007, www.citeseer.ist.psu.edu.

27. Krishna A.V.N, S.N.N.Pandit, A.Vinaya Babu: A generalized scheme for data encryption

technique using a randomized matrix key, Journal of Discrete Mathematical Sciences &

Cryptography, Vol 10, No. 1, Feb 2007, pp73-81

28. Krishna A.V.N, A.Vinaya Babu: Pipeline Data Compression & Encryption Techniques in

e-learning environment, Journal of Theoretical and Applied Information Technology, Vol

3, No.1, Jan 2007, pp37-43.

29. Krishna A.V.N, A.Vinaya Babu: A Modified Hill Cipher Algorithm for Encryption of

Data in Data Transmission, Georgian Electronic Scientific Journal: Computer Science

and Telecommunications 2007 N0. 3(14) pp 78-83.

30. Krishna A.V.N., A.Vinaya Babu: Web and Network Communication security

Algorithms, Journal on Software Engineering, Vol 1,No.1, July 06, pp12-14

31. Georg J. Fuchsbauer 2006, An Introduction to Probabilistic Encryption, Osjeˇcki

matematiˇcki list 6(2006), 37–44.

32. Georg J.Fuchsbauer: An Introduction to Probabilistic Encryption, ‘Osjecki Matematicki

List 6(2006), pp37-44.

33. Krishna A.V.N., Vishnu Vardhan.B.: Utility and Analysis of some Encryption algorithms

in E learning environment, International Convention Proc. Of CALIBER 2006, 02-04

Feb. 2006, Gulbarga, India.

34. Luminiţa SCRIPCARIU et al 2006, Java Implemented Encryption Algorithm.

35. Krishna A.V.N.: A new algorithm in network security, International Conference Proc. Of

CISTM-05, 24-26 July 2005, Gurgoan, India.

36. Pci Yihting: A Temporal order Resolution algorithm in the multi server time stamp

service frame work, International Conference on Advanced Information Networking &

Applications, AINA 2005, Vol 2m 28-30 March, pp 445-448.

37. Brics: Universally comparable notions of key exchange and secure channels, Lecture

Notes in Computer Science, Springer, Berlin, March 2004.

38. Krishna A.V.N., S.N.N.Pandit: A new Algorithm in Network Security for data

transmission, Acharya Nagarjuna International Journal of Mathematics and Information

Technology, Vol: 1, No. 2, 2004 pp97-108

