

JAYOTI VIDYAPEETH WOMEN'S UNIVERSITY, JAIPUR FACULTY OF HOMOEOPATHIC SCIENCE

Faculty Name	:	JV'n Dr. M.P. Sharma	
		Teaching Methodology of physiology	
Program	:	BHMS 1 st year	
Course	:	Physiology	
Session	:	Biochemistry Carbohydrate	

Academic Day starts with -

 Greeting with saying 'Namaste' by joining Hands together following by 2-3 Minutes Happy session, Celebrating birthday of any student of respective class and National Anthem

Lecture Starts with-

- **Review of previous Session-** In previous session as I had discussed about introduction of protein. Now tell me about tertiary protein?
- **Topic to be discussed today-** Today I will discuss about carbohydrate. I will start this topic from introduction of carbohydrate structure.

Carbohydrate

- Carbohydrates are polyhdroxy aldehydes or ketones
- Carbohydrates are the main *source of energy* to body.
- General *molecular formula* of carbohydrates is Cn(H₂O)n

- *Classified* into monosaccharide, disaccharides, oligosaccharides & polysaccharides.
- Molecules having only one actual or potential sugar group are called *monosaccharides*, which cannot be hydrolysed further.
- *Polysaccharides* having only one type of monosaccharide unit are called*homopolysaccharides* & those having different monosaccharide units are*heteropolysaccharides*.
- Glyceraldehyde is the *reference* molecule for carbohydrate.
- *D sugars* are naturally occurring sugars & body can metabolise only D sugars.

carbon atom	Generic name	Aldoses	Ketoses
3	Triose	Aldotriose Glyceraldehydes	Ketotriose Dihydroxyacetone
4	Tetrose	Erythrose	Erythrulose
5	Pentose	Arabinose Xylose Ribose	Xylulose Ribulose
6	Hexose	Glucose Galactose Mannose	Fructose
7	heptose	Glucoheptose	sedoheptulose

• Common monosaccharides

Properties of carbohydrate

- Carbohydrates show streoisomer, optical activity, epimers & Anomerism.
- *Stereoisomers:* compounds having same structural formula but differ in spatial configuration.
- *Epimerism:* when sugars are different from one another, only the configuration with regard to a single carbon atom (other than the reference carbon atom).

Reactions of carbohydrate

- *Osazone* formation (Phenyl hydrazine): All reducing sugars form characteristic osazone crystals.
 - Glucose & fructose form needle shaped crystals,
 - Maltose form sun flower shaped crystals &
 - Lactose form hedge-hog shaped crystals.
 - Important *disaccharides* are sucrose, maltose, isomaltose & lactose.
 - *Sucrose* is not a reducing sugar because it does not have free aldehyde or ketone group. (invert sugar).
 - *Isomaltose* is a reducing sugar, contains 2 glucose units combined in $\infty 1$, 6 linkages.
- Salient features of important sugars

Monosaccharide	S
Glucose	Aldohexose
Galactose	4 th epimer of glucose
Mannose	2 nd epimer of glucose
Fructose	Ketohexose

1.0

Disaccharides		
Glucose + galactose	Lactose (reducing)	
Glucose + glucose	Maltose (reducing)	
Glucose + Fructose	Sucrose(reducing) $\infty - 1$, 2 glycosidic bond	

- *Starch* is the reserve carbohydrate of plant kingdom.
- Starch is made of unbranched part, amylaseformed of ∞ 1, 4 glycosidic linkages & branched part, amylopectin made by ∞ 1, 6 linkages.
 - Amylopectin gives red colour to iodine reaction.
 - *Cellulose* is a chief carbohydrate in plants. Due to the absence of enzyme cellubiase, man cannot digest cellulose.
 - *Inulin* is a long chain homoglycan composed of D-fructose units with repeating beta-1, 2 linkages.
 - *Glycogen* is the reserve carbohydrate of animal kingdom.
 - Heteroglycans are polysaccharides containing more than one type of sugar residues.
 - *Heparin* is the strongest acid in human body.
 - Mucopolysaccharides or glycoaminoglycans (GAG) are carbohydrates containing uronic acid & amino sugars.
 - When the carbohydrate chains are attached to a polypeptide chain it is called *proteoglycan*.

Reference :

- Essentials of Medical Physiology 8th Edition 2019 (Free Review of Medical Physiology 3rd edition) By Sembulingam
- 2. Guyton and Hall Textbook of Medical Physiology 12th-Ed

- 3. Textbook of Physiology AK Jain
- 4. www.ncbi.nlm.nih.gov > pubmed
- 5. www.webmd.com
- 6 https://www.homeobook.com/biochemistry-notes-for-competitiveexaminations/
- 7 https://academic.oup.com/mbe/article/34/5/1252/2996746

```
8.https://www.google.com/search?q=CARBOHYDRATE+in+ANCIENT+LITE
RATURE&hl=en&source=lnms&tbm=isch&sa=X&ved=2ahUKEwjj5Y
Xe_6DoAhXmyDgGHaAhDIMQ_AUoAXoECA0QAw#imgrc=IVHxB0
Y6TtLZvM
```

Review of literature- in process

- Suggestions to secure good marks to answer in exam-
 - ➢ Give answer with complete labeled diagrams.
 - Explain answer with key point answers
- Questions to check understanding level of students-
 - ➢ Write about lipids?
 - ➢ What is primary protein?
- Next Topic-
 - ➤ carbohydrate

Academic Day ends with-

National song' Vande Mataram'