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“As professor in the Polytechnic School in Zürich I found myself for the first time 
obliged to lecture upon the ideas of the differential calculus and felt more 
keenly than ever before the lack of a really scientific foundation for arithmetic. 
In discussing the notion of the approach of a variable magnitude to a fixed 
limiting value, and especially in proving the theorem that every magnitude 
which grows continuously but not beyond all limits, must certainly approach a 
limiting value, I had recourse to geometric evidences. ... This feeling of 
dissatisfaction was so overpowering that I made the fixed resolve to keep 
mediating on the question till I should find a purely arithmetic and perfectly 
rigorous foundation for the principles of infinitesimal analysis”. 

- Dedekind 
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 “ A time will come when all living bodies including Monkeys and Cows, will start 
to speak numeric language and the language would be recognized through Real 
Analysis concept - mathematical language, and frankly telling, will start 
interaction in numeric language for their food and survival, then the importance 
of all non terminating digits and fractions would be more and a specific  like cut 
rather than what told by Dedekind,  will come to be invented in the world of 
Mathematics and Computing, as a Professor of Mathematics and Computing at 
Jayoti Vidyapeeth Women’s University,Jaipur, Rajasthan, India, I feel so.” 

      -Shobha Lal 

26 November,2020 
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Author Speaks 

 In the book of Mathematics or Computing it is difficult to claim the originality of theorems, 
corollary and results, as different scholars and learned Authors have written a lot. Almost present 
form of book is the hand book as ready reckoner for the students of UG/PG/Research for the 
students of all Indian Universities. Since long time the attention of Mathematical Scientists have 
been directed towards the understanding of the real numbers systems processes occurring in the 
evolution  any certain decision in Daily life . Only recently it has become apparent that the late 
stages of evolution of a digits is uniquely characterized from the energetic point of view by 
gravitational and rotational energy too including other aspect of Research, and that the most 
violent and energetically relevant moments in the life of a star indeed take place after the 
exhaustion of the nuclear sources of energy has occurred.cts ensuing from gravitational collapse, 
appear to be more. People talk about Newton, Einstein but less about a heroic scientist who 
invented zero and in the fifth century established the concept of gravitational pulling by the earth 
though existence of Newton is supposed in fourteen century. 

 Then the importance of Real number systems come as - Gravitational interaction either slowly 
generating the luminosity of white dwarfs through their continuous contraction, or producing in 
the accretion process in X-ray source or, again completely determining the physical process 
during gravitational collapsed object ensuing from gravitational collapse, appear to be more and 
more the back- bone, the only fundamental field theory, of this drastically new domain of 
physics. In this sense the in-depth       analysis of a relativistic theory of gravity has become in 
the recent years not only much more easy due to the existence in nature of collapse standing of 
very large number of objects, but it was impossible to understand with specific nomenclature of 
number system to be counted in real number systems only, but also much more relevant to our 
understanding of very large number of physical processes, inherent with the numbers and 
number lines . If we turn to the long range program me of research we have seen in the recent 
years the preparation of an entire new chapter of  even, Astrophysics , algebra and others what 
we could call”. Burst Astronomy”- it would had not seen days of the light without fractional 
understanding.  In another aspect one can see- gravitational of neutrino bursts, of possible 
associated electromagnetic radiation are all rapidly improving in sensitivity and sophistication 
while in the theoretical field basic advances are made in the analysis of fully relativistic, to be 
expressed in the real number systems only, short time phenomena. In the next few years we 
should be able to reach in all these different experimental fields the limits of detachability 
theoretically predicted, what Dedekind has forecasted. The direct observation through different 
techniques of the moment of gravitational collapse appear to be of the great interest. More we 
learn of the physics characterizing the configurations of equilibrium of cold catalyzed matter, the 
more we see this need of processes of gravitational collapse to occur under a variety of regions. 
It is also clear that it is unavoidable that all collapsed objects we are today observing either in 
pulsars or in binary X-ray source s had to be formed through this processes. 
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The observation of the moment of gravitational collapse will disclose, among others, one of the 
most fundamental predictions of general relativity namely that gravity, as any of her long range 
interaction has to propagate with a finite velocity equal to the speed of light and that gravitational 
energy can be carried by waves. 

The direct technological advance brought by these observations will most likely be very limited 
the influence however for our understanding of nature will certainly be enormous. This brings us 
to another domain of physics also dominated by a fully relativistic theory of gravity: Cosmology. 
The greatest sources of our research on gravitational  collapse will be reached if not only  we will 
be able to describe using different technique and detailed theoretical work the  physical process 
occurring in this very short phenomena but if we will be able to apply to cosmology the 
enormous amount of knowledge we are acquiring in this research. Recent development s in 
Astronomy and Astrophysics , that is, the discovery and study of quasi-stellar sources, of 
explosions in galactic nuclei, of strong extra solar X-ray sources , and of pulsating radio source- 
have lead to a reawakening of interest in the possible roles in nature of relativistic systems with 
strong gravitational fields. Thus far, this interest lies concentrated largely on roles which 
relativistic stars might possible play in various astronomical situations. As a result, such effort 
has been expanded on studies of structures and stabilities of the relativistic stars. The modern 
form of the problems of gravitational collapse dates  back to the work of  Chandershekhar and 
Landau(in 1930’s) who firs showed that the normally accepted physical laws do not permit  the 
existence of any cold static  equilibrium states( whether in planetary, white dwarf or even 
neutron star form) for bodies more than  one or two  times as massive as the sun, since the 
formation of   stars up to  several tens times more massive than this occurs frequently  within our 
galaxy, and since such  massive stars burns up their  nuclear energy reverses extremely rapidly 
by comparison with cosmological times scale, it is hard to avoid the conclusion   that many stars  
within our own immediate  neighborhood  must already have reached  the stage of being  faced 
with  runaway gravitational collapse.  This poses on our hand the theoretical problems  of 
understanding what goes  on in  such  a collapse  and on other  hand  the observational  problem 
of  de recognizing  and detecting  the collapsed  objects  which  presumably exist around  about 
us. 

These questions have given rise to such wide spread and intense interest and activity in the last 
few years that it is hard to understand why, apart fro a very small   number of individuals 
(including most notably J.R.Oppenheimmer and J.A Wheeler) . Very few physicists gave any 
attention at all such phenomena prior to 1960, and why they were neglected even longer by 
observational Astronomers who tended to brush aside collapsed objects as figments of the 
theoretician’s imagination. Today, however, the situation has been revolutionized. On the one 
hand every substantial process on the basis of Einstein’s General Theory of Relativity- has been 
made on the theoretical collapse problem during the last decade, and on the other hand 
Astronomers have tended to take theoretical predictions much more seriously since the 1968 
discovery of Pulsars (which lead in particular to the configuration of the standing prediction of 
existence of a neutron star at heart of the “Crab Nebula”)in the form of Real number system too 

The other  massive  line of investigation  deriving from  Penrose ‘s paper has been the study of 
what  are today  known as  “BLACK HOLE”, that  is  to say extended regions of space-time 
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(containing the singularities in their interiors) where the  gravitational field, although finite, is 
sufficiently  strong to prevent  the escape even of particles moving  with  the velocity of  light . 
In particular case  of  exactly spherical collapse, the formation of Black hole bounded by  a  
horizon at the Schwarzschild   radius was already   well known . \ 

It evident fact that gravitational collapse and its evidence in the term of White dwarf, Neutron 
Stars and Black holes(Rotating  and Non rotating) in our galaxy exists. 

 Adventure of Real Numbers can be seen in a detailed study of the properties of time –like and 
Null geodesics, specially of stable circular orbits, in the charge free Kerr metric have been 
presented by Bardeen, has been made .In the case of Bardeen, the three direct orbits radius of 
marginally stable circular, radius of marginally bound orbit and radius for circular photon orbit, 
all seems to coincide  with the  event horizon in extreme Kerr black hole . He has also obtained 
the three orbits rms= 6m, rmb=4m  and rph=3m for schwarzs child metric. But in his case there 
are no circular orbits corresponding to rms=6m  rmb=4m, and rph=3m, conciding with event 
horizon.  To have to put the fact that in addition to the stable circular orbits obtained by Bardeen, 
there exists a circular orbit out side the ergo sphere of the  Kerr black hole where all these direct 
orbits( marginally stable, the marginally bound and the circular photon orbits) coincide. I  have 
tried my best to show first of  in the world the  storage of energy due to celestial objects due to 
gravitational collapse is possible in the Skylab .Interestingly, convergence of null rays, orbit of 
the emitter and photon orbit s, frequency shift and fluctuation periods have been discussed in 
details besides the following conclusions real asymmetric zones are required 

“Lastly, it appears that the circular orbits near the event horizon of the perturb bed metric can be 
able to explain the formation and nature of rings round the Saturn and other planet s in our 
galaxy”. A base line concept may be seen as 

“ In about five billion years the sun  will have consumed so much of its Hydrogen in 
thermonuclear reactions that it will evolve to a star of this type known as” Red giant”. Standard 
theory predicts that the sun will grow to some 250 times of its present diameter of 8, 50,000 
miles, devouring Mercury, Venus and Probably the earth in the process “ and my opinion is that 

“Black hole is useful for all existing creatures in the Universe, as it maintains force of 
equilibrium amongst different celestial bodies of our Galaxy, don’t fear but must love Black 
hole,  Miracly, in absence of sun ,in the Universe, Black hole would be saving you and your lives 
, in the absence of sun life is possible since master energy saver Black hole would continue even 
there is no halting probability of surviving the sun after five billions years, we can control 
process of nuclear fission and fusion  inside the sun 24 by7..”.In my opinion whatever be the 
achievement of Astrophysics and Astronomy equal credited should be given to this Bihar(Patna) 
based Indian Scientist in which there was huge role of Number system and Real Analysis. 

Lastly,I shall consider my humble effort successful if the hand  book becomes useful to the 
global  readers  and the teachers and if it is well received by them. Any suggestion or 
improvement will be gratefully appreciated. 
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DEDEKIND’S THEORY  

1.1. Overview: 
In this Hand book we shall learn about the introduction of the real number system 
which occupies the fundamental position in any discussion of mathematical discipline, 
much less the study of mathematical analysis; nay,  In Modern Era the study of 
mathematics starts with the system of real numbers. For the construction of real 
numbers system we shall assume familiarity with rational number and their basic 
properties. But for the sake of continuity we would like to present in brief the extension 
from the set of positive integers to rational number system. This extension has been 
found necessary to obviate difficulties encountered in the solution of algebraic 
equations. For example, consider the solution of the equation 𝑎 + 𝑦 = 𝑏 where 𝑎 and 𝑏 
are positive integers and 𝑎 > 𝑏. We know that so long as we restrict ourselves to the set 
of positive integers, this equation has no solution. We are thus led to the introduction of 
negative integers and say that the equation 𝑎 + 𝑦 = 𝑏 has a solution given by 𝑦 = 𝑏 − 𝑎 
even when 𝑎 > 𝑏. Again, consider the solution of the equation 𝑎𝑦 = 𝑏 where 𝑎 and 𝑏 
are integers and 𝑏 is not a multiple of 𝑎. As before, if we restrict ourselves to the set of 
integers, this equation has no solution. But in order to have a solution of this equation 
we introduce rational numbers. Thus we say that the equation 𝑎𝑦 = 𝑏 has a solution 

given by 𝑦 =



 even when 𝑏 is not 𝑎 multiple of 𝑎. In this way we build up a bigger class, 

beginning with the set of positive integers to the set of integers which include the 
former and thence the set of rational numbers that include the set of integers both as 
positive and negative as a special case. 
Here, we want to assert that a bigger class still exists. So far we have presented the 
extension from the set of positive integers to the set of rational numbers through the 
solution of algebraic equations. But there are equations whose solutions do not lie in 
the set of rational numbers. For example, consider the solution of the equation𝑦ଶ = 2. 

From this we gety = √2. It will be shown that √2  is not a rational number. Thus we 
come across certain numbers which are not rational numbers. We call them irrational 
numbers. 
The aim of this Exercise is to characterize these numbers analytically. We shall study in 
this here how Dedekind, a veteran scientist and German Mathematician (1831-1916) 
characterised these numbers by means of sections or cuts of rational numbers.  This 
Scientist took the notion of cut as the basic notion in his theory of real numbers in 
Realm Analysis. The concept ‘real number’ synonymous with ‘cut’; a cut produced by a 
rational number was called a real rational number and one not so produced was called a 
real rational number and one not so produced was called a real irrational number. 
 Readers are supposed to go through the other concept related to this also .Note please 
that there are two more important theories regarding the introduction of real numbers: 
This first one is that of Cantor (1845-1918, German) and the 2nd other is that of 
Weierstrass (1815-1897, German).  Notable fact is that Cantor took the notion of Cauchy 
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sequence fundamental in his theory of real numbers by postulating that a real number 
was nothing but a class of equivalent Cauchy sequences of rational. 
 Fact is that a Cauchy sequence of rationals convergent to a rational number was called 
a real rational number and a Cauchy sequence of rationals which did not converge to a 
rational number was called an irrational number earlier. 
 A noted theory as –Weierstrass took the notion of nested intervals and propounded his 
theory of real numbers by prescribing that a real number was nothing but a class of 
nested intervals of rationals in Real number system.  Basically, a class of nested intervals 
closing upon a rational was called a real rational number and one not so closing upon a 
rational number was called a called a real irrational number whereas there is  intention 
to lead towards  other concept also  . 
 Cantor’s and Weierstrass method of introducing real numbers, though they will be 
referred to in their proper places but simply to discuss how Dedekind’s introduced the 
theory of real numbers through the sections of rational numbers-as a whole Real 
number system. 
Readers should note that the system of real numbers differs from the system of rational 
numbers in one very important respect namely that the system of real numbers is 
complete whereas the system of rational numbers is not complete- a brain storming fact 
is for discussion here. 
 It means that if we sectionise the collection of rational numbers is the sense of 
Dedekind, then we shall get a new number different from rational numbers and that is 
our real number. But if we setionise the collection of real numbers, then we shall not 
get a new number other than a real number. That is, Dedekind’s cut of the system of 
real numbers is always a real number.  
Similarly in the sense of Cantor there are convergent sequences of rational numbers 
such that their limit is not always a rational number.  
But the limit of a convergent sequence of real numbers is always a real number. Thus 
judging from either of the two methods we find that there are gaps in the system of 
rational numbers but there are no gaps in the system of real numbers. We express this 
fact by saying that the system of real numbers is complete but the system of rational 
numbers is not complete. Thus we find that the system or the set of real numbers not 
only includes the set of rational numbers as a subset but also retains all those properties 
which are possesses by rational numbers and moreover it possessesone more additional 
property namely that the set of real numbers is complete whereas the set of rational 
numbers is not. As a matter of fact, between any two rational numbers there exists an 
infinite number of rational numbers. Thus the system of rational numbers is dense and 
it appears that it is a complete system. But it is not so. In other words, the set of real 
numbers is a complete ordered field, but the completeness property is absent form the 
set of rational numbers; it is simply an ordered field. In this sense we can say that the 
set of real numbers is richer than the set of rational numbers. Consequently the set of 
real numbers comes to play a dominant role in mathematics and in particular in analysis. 
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In fact many concepts in topology are abstractions of properties of the set of real 
numbers. In the next chapter it is our attempt to characterise the properties of the set 
of real numbers and to place them in a general setting so that the theorems proved for 
one-dimensional point-set of real numbers may admit of immediate generalisations. 
But before doing so, we would like to recall inherent properties and deficiencies of the 
rational number system. 

1.2. DEFINITION 
Rational Number – A fraction of the from


where 𝑝 and 𝑞 are integers in their lowest 

terms and 𝑞 ≠ 0 is called a rational number.  

Froexample ଵ
ଶ

,
ସ

ଽ
,

ିଶ

ଷ
, …. are rational numbers. 

We shall next show that the set of rational numbers is a field w.r.t. usual addition and 
multiplication, and also it is linearly ordered. For this, we shall recall the following field 
axioms and order axioms. 

1.3. THE FIELD AXIOMS 
A non-empty set (𝐹, +,∙) together with the two operations + and respectively called 
addition and multiplication, is called a field if the following conditions are satisfied: 
Let 𝑎, 𝑏, 𝑐 ∈ 𝐹 be arbitrary. 

I. Laws of addition : 
(ii)𝑎 + 𝑏 ⇒ 𝐹(Closure law) 
(ii)𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 (associative law) 
(iii)There exists an identity element denoted by 0 such that for each 𝑎 ∈ 𝐹, 
𝑎 + 0 = 0 + 𝑎 = 𝑎 (Existence of identity element) 
(iv)For each 𝑎 ∈ 𝐹, there exists an element 𝑎’, called the inverse of 𝑎 such that  
𝑎 + 𝑎ᇱ = 𝑎ᇱ + 𝑎 = 0 (Existence of inverse) 
The additive inverse of a is generally denoted ny(−𝑎). 
(v)𝑎 + 𝑏 = 𝑏 + 𝑎 (Commutative law) 

II. Laws of multiplication : 
(vi)𝑎, 𝑏 ∈ 𝐹(Closure law) 
(vii)𝑎 ∙ (𝑏 ∙ 𝑐) = (𝑎 ∙ 𝑏) ∙ 𝑐 (associative law) 
(viii)For each 𝑎 ∈ 𝐹,  there exists an unity element denote by ‘1’ such that  𝑎 ∙ 1 = 1 ∙

𝑎 = 𝑎 (Existence of unity) 
(ix)For each non-zero 𝑎 ∈ 𝐹,  there exists an element𝑎ିଵ, called the multiplicative 
inverse of 𝑎 such that  𝑎 ∙ 𝑎ିଵ = 𝑎ିଵ ∙ 𝑎 = 1. (Existence of inverse) 
(x)𝑎 ∙ 𝑏 = 𝑏 ∙ 𝑎 (Commutative law) 

III. Distributive laws 
(xi) 𝑎 ∙ (𝑏 + 𝑐) = 𝑎 ∙ 𝑏 + 𝑎 ∙ 𝑐 
(xii) (𝑏 + 𝑐) ∙ 𝑎 = 𝑏 ∙ 𝑎 + 𝑐 ∙ 𝑎 
We shall not dwell on the details of deducing from the definition of a field all of the 
familiar algebraic facts and the rules governing manipulations. The facts and rules are 
part of the study of moderns abstract Algebra. 



Page | 13  
 

1.4. THE FIELD AXIOMS 
A field is called linearly ordered if it has additional structure namely a relation “<” which 
satisfies the properties of ‘less than’ as used in the real number system. Thus a field F is 
called a linearly ordered field or simply an ordered field if there is a relation ‘<,’ which 
establishes an ordering among the members of F and which satisfies the following 
axioms : 
(a) Exactly one of the relations 𝑥 = 𝑦, 𝑥 < 𝑦, 𝑥 > 𝑦 holds. 

It has to be noted that 𝑥 > 𝑦 means the same as 𝑦 < 𝑥. 
(b) 𝐼𝑓 𝑥 < 𝑦, then for every 𝑧 in 𝐹, we have 𝑥 + 𝑧 < 𝑦 + 𝑧. 
(c) 𝐼𝑓 𝑥, 𝑦, 𝑧 ∈ 𝐹 and 𝑥 > 𝑦, 𝑧 > 0, then 𝑥𝑧 > 𝑦𝑧. 
(d) 𝐼𝑓 𝑥, 𝑦, 𝑧 ∈ 𝐹 and 𝑥 > 𝑦, 𝑦 > 𝑧, then 𝑥 > 𝑧. 

1.5. THE SET OF RATIONAL NUMBERS IS A FIELD 
Let Q be the set of rational numbers, that is, numbers of the form 


 where 𝑝 and 𝑞 are 

integers and 𝑞 ≠ 0, together with the two operations of addition and multiplication. 
We are going to show that the set of rational numbers Q is a field w.r.t. addition and 
multiplication. For this, we observe that the following laws of addition, multiplication 
and distributive laws are obeyed. 

𝐈.   Laws of addition  
(i) If 


 and 

ௗ
∈ 𝑄, then  


+



ௗ
 which is = ௗା

ௗ
 

(a rational number also ∈ 𝑄. 
Therefore the set of rational numbers is closed w.r.t. addition. 

(ii) If 

 , 

ௗ
,




∈ 𝑄, then  

ቄ
𝑎

𝑏
 +  

𝑐

𝑑
ቅ +

𝑒

𝑓
=

𝑎𝑑 + 𝑏𝑐

𝑏𝑑
+

𝑒

𝑓
=

𝑎𝑑𝑓 + 𝑏𝑐𝑓 + 𝑏𝑑𝑒

𝑏𝑑𝑓
 




 + ቄ

ௗ
+




ቅ =




+

ାௗ

ௗ
+




=

ௗାାௗ

ௗ
 

∴  ቄ
𝑎

𝑏
 +  

𝑐

𝑑
ቅ +

𝑒

𝑓
=

𝑎

𝑏
+ ൜

𝑐

𝑑
+

𝑒

𝑓
ൠ. 

Thus the associative law is satisfied. 
(iii) The identity is zero, for 


+ 0 =




∙ 

(iv) The inverse of 

 is ቂ−




ቃ, for 


+ ቄ−




ቅ = 0 

(v) Also, 


+


ௗ
=



ௗ
+




∙ 

That is, the commutative law is satisfied. 
Thus we find that the set of rational numbers is an abelian group under addition. 

𝐈𝐈. Laws of multiplication 
 Let 𝑄∗ be the set of non-zero rational numbers.; that is, 𝑄∗ is the set Q with zero 

excluded. It can be shown as in the previous section (I) that  
(vi) The product of two rational numbers is a rational numbers; Hence if , 𝛽 ∈ 𝑄∗, then 

𝛼 ∙ 𝛽 ∈ 𝑄∗. 
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(vii)  The multiplication of rational numbers is associative. Hence if 𝛼, 𝛽, 𝛾 ∈ 𝑄∗, then 
𝛼 ∙ (𝛽 ∙ 𝛾) = (𝛼 ∙ 𝛽) ∙ 𝛾 

(viii) The identity of Q* is 1 ∈ 𝑄, for 𝑎 ∙ 1 = 1 ∙ 𝑎 = 𝑎, for 𝑎 ∈ 𝑄∗. 

(ix) The inverse of 𝑎 ∈ 𝑄∗; 𝑎 ≠ 0 is ଵ


(𝑜𝑟 𝑎ିଵ) ∈ 𝑄∗, for 

𝑎 ∙ 
1

𝑎
൨ = ൜

1

𝑎
ൠ ∙ 𝑎 = 1 

(x) The multiplication in 𝑄∗ is commutative; that is, if 𝛼, 𝛽 ∈ 𝑄∗, then 𝛼 ∙ 𝛽 = 𝛽 ∙ 𝛼 
Thus we find   that the set of non-zero rational numbers forms an abelian group 
under multiplication. 

𝐈𝐈𝐈.  Distributive laws : 
  If 𝛼, 𝛽, 𝛾 ∈ 𝑄, then obviously 
  𝛼 ∙ (𝛽 + 𝛾) = 𝛼 ∙ 𝛽 + 𝛼 ∙ 𝛾 

(𝛽 + 𝛾) ∙ 𝛼 = 𝛽 ∙ 𝛼 + 𝛾 ∙ 𝛼 
 Thus the distributive laws are satisfied. 
 Hence taking I, II,and III together we conclude that the set of rational numbers Q is a 

field w.r.t. addition and multiplication. 

1.6. PROPERTIES OR CHARACTERISTICS OF RATIONAL NUMBER SYSTEM 
Let Q be the set of rational numbers. 
The set Q possesses the two fundamental laws corresponding to (i) Laws of order and 
(ii) Algebraic structure. 
In the first case, we shall deal with the inequalities between two rational numbers and 
in the second case, we shall show that the set of rational numbers is a field and this we 
have shown in the preceding article. 
Consequently we discuss here the order structure of the set 𝑄. In this connection we 
shall use the usual inequality symbol ‘ > ’ to denote the relation ‘greater than’. Thus 
𝑎 > 𝑏 shall mean that a is greater than 𝑏. 
We enumerate the following laws of order subsisting in the set of rational numbers 𝑄. 

01. Law of trichotomy : Given any two rational numbers 𝑎, 𝑏 one and only one of the 
following holds : 
  𝑎 > 𝑏, 𝑎 =, 𝑏 > 𝑎 

02. Transitivity : If 𝑎, 𝑏, 𝑐 be three rational numbers such that a>b, then 𝑎 >

𝑏 and 𝑏 > 𝑐, then 𝑎 > 𝑐. 
This property is expressed by saying that the order relation is transitive. 

03. Order addition :If 𝑎, 𝑏, 𝑐 be three rational numbers such that 𝑎 > 𝑏, then 
𝑎 + 𝑐 > 𝑏 + 𝑥. 
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1.7. THEOREM 
There are infinity of rational numbers between any two different rational numbers.  
  [P.U. 57H,61H, 66H; Bhag. 92H] 
Proof :Let a and b be any two different rational numbers and let 
   𝑎 < 𝑏.      …(1) 
Suppose that k is any positive rational number. Then since 𝑘 > 0, we have, 
   𝑎𝑘 < 𝑏𝑘      …(2) 
⇒   𝑎 + 𝑎𝑘 < 𝑎 + 𝑏k; adding a to both sides 
⇒   𝑎(1 + 𝑘) < 𝑎 + 𝑏 

∴   𝑎 <
ା

ଵା
    …(3) 

Again adding bk a to both sides of (1), we get 
   𝑎 + 𝑏𝑘 < 𝑏 + 𝑏𝑘 ⇒ 𝑎 + 𝑏𝑘 < 𝑏(1 + 𝑘) 

∴   ା

ଵା
< 𝑏.    …(4)  

Hence from, (3) and (4), we get  

   𝑎 <
ା

ଵା
< 𝑏.    …(5) 

 Now ା

ଵା
 is a rational number which lies between a and b and this is true for every 

positive rational number k. But k is at our choice and we can assign infinity of values to k. Hence 
corresponding to infinite values of k we find that can pick up infinity of values. Each value is a 
rational number which lies between a and b.  

Hence we prove the theorem. 

1.8. DENSITY THEOREM  
Theorem : The system of rational numbers is dense everywhere r, there are infinity of 
rational numbers in the neighborhood of r.  
We proceed as follows: 
Let r be any rational number and let h be any small positive rational number, Then r-h 
and r+h both are rational numbers and the set of all rational points between (r-h,r+h) 
defines the neighborhood of r. 
We know that there are infinity of rational numbers between any two different rational 
numbers. Hence there are infinity of rational numbers between two rational numbers r-
h and r+h. That means that there are infinity of rational numbers in the neighbourhood 
of the rational number. But r is any rational number. Thus the system of rational 
numbers is dense everywhere. 
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1.9.  Based ARCHIMEDEAN PROPERTY OF RATIONAL NUMBERS 
Theorem : if a and b be two positive rational numbers such that 𝐚 < 𝑏, 𝑎 ≠ 0,then 
there exists a positive integer n such that nb>a. 
The effect of the theorem is to show that however small b may be, we can find a 
positive integer n such that nb>a. 
Proof :We have to prove here that there is some 𝑛 ∈ 𝑍 such that nb > 𝑎. Here we take 
Z to be the set of positive integers. 
We suppose on the contrary. This means that we have to prove now that nb < 𝑎 for all 
𝑛 ∈ 𝑍. 
Therefore we suppose that nb < 𝑎 for all 𝑛 ∈ 𝑍. 

Then   nb < 𝑎 ⇒ 𝑛
ୠ


< 1 

    ⇒
୬ୠ

ୟ
< 𝑚 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ∈ 𝑍 

    ⇒
୬ୠ

୫
< 𝑎 

    ⇒
୬

୫
<

ୟ


    …(1) 

But ୬

୫
 is positive rational number say x. Hence 

(1) ⇒ x <
ୟ


 for all 𝑥 ∈ 𝑄ା. 

 Where 𝑄ା denotes the set of positive rational numbers and this is false. Thus on 
the supposition that nb < 𝑎for all 𝑛 ∈ 𝑍 we arrive at a contradiction. 

 Thus we prove the theorem. 

1.10. EXISTENCE OF NON-RATIONAL NUMBERS. 
We shall take two examples to show that there are certain numbers which are not 
rational numbers. 

EX.1. Prove that √𝟐 is not a rational number. 

  [P.U. 51H;VBU.55H, 63H, 65H; Bhag. 65H;R.U. 65H; M.U. 91H] 

Soln.First of all, we shall show that if we square an odd integer, the result is always an odd 
integer. For if m=2n+1, then 

  mଶ = (2n + 1)ଶ = 4nଶ + 4n + 1 

   = 2(2nଶ + 2n) + 1 

 Which is an odd integer 2p + 1 where p = 2nଶ + 2n. 

 Hence it follows that if mଶ is not an odd integer, then 𝑚 is not an odd integer, i.e. if mଶ 
bean even integer then 𝑚 must be necessarily even. 
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 Now, we are equipped to prove that √2 is not a rational number. Suppose on the contrary 

that √2 is a rational number. 

 Let  √2 =



      …(1) 

Where p and q are in their lowest terms. 

From (1),  𝑝ଶ = 2𝑞ଶ     ...(2) 

But 2𝑞ଶ is an even integer and therefore 𝑝ଶ is even. 

This implies that 𝑝 must be even. Let p = 2m. 

Then, from (2), 4mଶ = 2𝑞ଶ 𝑜𝑟 𝑞ଶ = 2mଶ. 

As before, since 𝑞ଶ is even, 𝑞 must be even. 

Thus 𝑝 and 𝑞 are in their lowest terms. Hence we get a contradiction. Hence our supposition 

that √2 is a rational number is false.  

Thus we prove that √2 is not a rational number. 

EX.2. Prove that there is no rational number whose square is 12. 

        [P.U. 62H] 

Soln.Let us suppose that ୮

୯
 is a rational number in its lowest terms whose square is equal to 12. 

Then  

  ቀ
୮

୯
ቁ

ଶ

= 12 or 
୮మ

୯మ = 12 i. e pଶ = 12qଶ 

∴   pଶ − 12qଶ = 0   …(1) 

We now choose two consecutive positive integers such that 12 lies between the squares of 
those integers. Obviously such integers are 3 and 4. Thus 

   3ଶ < 12 < 4ଶ 

i.e.   3ଶ < ቀ
୮

୯
ቁ

ଶ
< 4ଶ ⇒ 3 <

୮

୯
< 4 

⇒  3q < 𝑝 < 4𝑞    …(2) 

Now we consider the identity  

  (12𝑞 − 3𝑝)ଶ − 12(𝑝 − 3𝑞)ଶ 

  =9(4𝑞 − 𝑝)ଶ − 12(𝑝 − 3𝑞)ଶ 
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  =9(16𝑞ଶ − 8𝑝𝑞 + 𝑝ଶ) − 12(𝑝ଶ − 6𝑝𝑞 + 9𝑞ଶ) 

  =144𝑞ଶ-72 𝑝𝑞+9𝑝ଶ-12𝑝ଶ+72 𝑝𝑞-108𝑞ଶ 

  =36𝑞ଶ-3𝑝ଶ=-3(𝑝ଶ-12𝑞ଶ) 

  =0;because of (1). 

Hence  (12𝑞 − 3𝑝)ଶ = 12(𝑝 − 3𝑞)ଶ 

⇒  ቀ
ଵଶିଷ

ିଷ
ቁ

ଶ

= 12. 

Now ଵଶିଷ

ିଷ
 is a rational number whose denominator 𝑝 − 3𝑞 < 𝑞. Because of (2). 

Thus 12 is the square of a rational whose denominator is < 𝑞. 

But we have supposed that 12 is the square of a rational number 


 in its lowest terms. Hence 

we get a contradiction. 

Hence there is no rational number whose square is 12. 

The above two examples are covered by a general sort of theorem which is as follows: 

1.11. THEOREM 
To prove that the square root of any positive rational number which is not a perfect square is 
not a rational number.  [Bhag.94H] 
Let 𝑚 any positive rational number which is not a prefect square. 
We want to prove that √𝑚 is not a rational number. 
Suppose on the contrary that √𝑚 is a rational number and let √𝑚 =




 

Where 𝑝 and 𝑞 are integers prime to each other i.e. they have no factorc in common. 

Then   𝑚 = ቀ



ቁ

ଶ

 𝑜𝑟 𝑚 =
మ

మ 

⇒   𝑚𝑞ଶ − 𝑝ଶ = 0    …(1) 

 We choose two consecutive positive integers 𝑘 and 𝑘 + 1 such that 

   𝑘 < √𝑚 < 𝑘 + 1 𝑖. 𝑒. 𝑘 <



< 𝑘 + 1 

⇒   𝑘𝑞 < 𝑝 < (𝑘 + 1)𝑝    …(2) 

Now consider the identity 

   (𝑚𝑞 − 𝑘𝑝)ଶ − 𝑚(𝑝 − 𝑘𝑞)ଶ = (𝑘ଶ − 𝑚)(𝑝ଶ − 𝑚𝑞ଶ); 

     On simplification as in the previous Ex. 
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     = (𝑘ଶ − 𝑚)x(0) = 0; 

        Because of (1) 

∴  𝑚 =
(ି)

(ି)మ

ଶ
𝑖. 𝑒. √𝑚 =

ି

ି
 

But from (2), 𝑝 − 𝑘𝑞 < 𝑞. 

This shows that √𝑚 is also equal to a rational number in which the denominator is < 𝑞 and 

hence ି

ି
≠




. 

This is contrary to our supposition and hence our assumption that √𝑚 is a rational number is 
false. 

Therefore it follows that √𝑚 is not a rational number.  
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EXAMPLE 1(A) 

1. Prove that there is no rational number whose square is equal to 2.    
    [P.U. 51H; B.U. 55H, 65H; Bhag.65H; R.U. 65H, 74H] 

2. Prove that no rational number can have its square equal to 3. [B.U. 53H] 

3. Prove that √5 is an irrational number.      [Bhag.91H] 

4. Prove that √8 is not rational number.     [Bhag.93H] 
5. Examine whether the set of rational numbers contains a solution of the equation 

𝑥ଶ − 8 = 0.      [P.U. 67H] 
6. Prove that there is no rational number whose square is 12. [P.U. 62H] 
7. If 𝑑 is a positive integer but not the square integer, show that 𝑑 is not the square of a 

rational number.    [P.U. 53H; R.U. 70H] 

8. Show that no rational number exists whose 𝑛𝑡ℎ power is equal to 


 where 


 is a positive 

fraction in its lowest terms, unless 𝑎 and 𝑏 are prefect 𝑛𝑡ℎ powers.   
 [P.U. 59H; M.U. 63H; B.U. 69H] 
[Soln.Let 


 be a rational number in its lowest terms whose 𝑛𝑡ℎ powers is 


 i.e.  

 ቀ



ቁ



=



 𝑖. 𝑒. 𝑏𝑝 = 𝑎𝑞    …(1) 

 This equation implies that since 𝑝 is prime to 𝑞. ∴ 𝑝must be a divisor of 𝑎. 

 Let 𝑎 = 𝜆𝑝 where 𝜆 is an integer. Putting in (1), we get  

   𝑏𝑝 = 𝜆𝑝𝑞 ⇒ 𝑏 =  𝜆𝑞. 

 Thus, we have 𝑎 = 𝜆𝑝 and 𝑏 =  𝜆𝑞. 

 But 𝑎 is prime to 𝑏, therefore 𝜆 = 1. Thus 𝑎 = 𝑝 and 𝑏 = 𝑞 i.e. 𝑎 and 𝑏  are perfect 
𝑛𝑡ℎ powers. 

9. Prove generally that a rational fraction 

 in its lowest terms cannot be the cube of a 

rational number unless 𝑝 and 𝑞 are both perfect cubes. 
      [P.U. 57H, 64H] 
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1.12.  QUITE MOTIVATION : 
See-the two examples on page 10 amply exhibit to us that there are certain numbers 
which are not rational numbers. If we accommodate these numbers in our fold then the 
solution of such equations as 𝑥ଶ = 2 becomes feasible. Hence the question before us is 
to provide a ground for the induction of these non-rational numbers in our number 
system. We will read in this chapter how Dedekind provided an analytical method for 
the induction of such non-rational numbers through the sections of rational numbers. 
The motivation is provided by the following considerations. 
We know that the set of rational numbers Q forms an ordered field. Now since the 
rational number system is an ordered field, we may imagine the rational numbers to be 
arranged in order on a line from left to right. If we make a cut of the line in the physical 
sense at any point α on it, then the set of rational numbers Q is separated into two non-
empty proper subsets of it say 𝐿and 𝑅, all rational numbers to the left of α lie in 𝐿 and 
all those to the right of 𝛼 lie in 𝑅. Now there are two possibilities: either 𝛼 corresponds 
to a rational number or 𝛼 does not correspond to a rational number (potenuse of a 

right-angled triangle whose other sides are 1 each= √2. If 𝛼 does not correspond to a 
rational number, then no element of Q escapes classification. But in order to avoid this 
short of ambiguity we make the rule that whenever corresponds to a rational number, α 
will be placed in R only. 
Thus whether α corresponds to a rational number or it does not corresponds to a 
rational number, a cut at the point α of the line separates Q into two non-empty proper 
subsets 𝐿 and 𝑅, usually called the lower class and upper class respectively such that 
(i) L ∩ R = ∅ 
(ii) L ∪ R = Q 
(iii) Each x ∈ L < 𝑒𝑎𝑐ℎ 𝑦 ∈ 𝑅 

Because of (i) and (ii) we may write R = Q − L which is therefore the complement of L. 
The ordered pair (L, R) of non-empty proper subsets of Q is called a Dedekind cut or 
Dedekind section after the name of Dedekind who first conceived of it. However, since 
every point is in either L orR it is clear that instead of describing a cut by considering 
both Land R, we might describe it by specifying say L and then R would be 
automatically determined as the rational points not in L. Moreover it would be 
convenient to assume that L has no greatest member. We shall give in the next section a 
formal definition of a Dedekind cut, independent of any geometrical intuition that is 
inherent in the above description. 
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DEDEKIND’S CUT 

1.13. Let the set of rational numbers be denoted by the symbol Q. We divide the set of 
rational numbers into two classes L and R such that 
[D1]: L ≠ ∅, R ≠ ∅, This means that there is at least one rational point in L as well as 
inR. 
[D2]: L ∪ R = Q. This means that there is no rational number which escapes 
classification. This means that every rational number must find a place either in Lor R. 
[D3]: Every rational number belonging to L is less that every rational number belonging 
to  
Ri.e.𝑥 ∈ 𝐿, 𝑦 ∈ 𝑅 ⇒ 𝑥 < 𝑦, 

Therefore Land R are called respectively the lower class and the upper class. Thus if a rational 
number 𝑝 ∈ 𝐿, then 𝑞 < 𝑝 then 𝑝also belongs to 𝐿, for if 𝑞 does not belong to 𝐿 i.e. if 𝑞 ∈ 𝑅, 
then p becomes< 𝑞 which is contrary to our supposition. Similarly if a rational number 𝑟 ∈ 𝑅, 
then every rational number> belongs to 𝑅. 

Evidently [D3] ⇒ L ∩ R = ∅. 

Thus if a rational number∈ 𝐿, then it does not belong to 𝑅 or if a rational number∈ 𝑅, then it 
does not belong to 𝐿. 

Since L ∩ R = ∅and L ∪ R = Q, therefore 𝐿 and 𝑅 are complementary sets to each other and 
we can write 𝑅 = 𝑄 − 𝐿 (Comp. 𝐿’). 

Such a pair as (𝐿, 𝑅) of subsets of Q which satisfies the three conditions stated above is called a 
section of rational numbers and is denoted by (𝐿, 𝑅). As it was stated earlier, 𝐿 is called the 
lower class and 𝑅 the upper class of the section. 

Cor. (i) 𝐼𝑓 𝑝 ∈ 𝐿 𝑎𝑛𝑑 𝑞 < 𝑝, 𝑡ℎ𝑒𝑛 𝑞 ∈ 𝐿. 𝐿𝑒𝑡 𝑞 ∈ 𝑅 𝑇ℎ𝑒𝑛 𝑞 > 𝑝, according to   [D3]. 

 (ii) Similarly it can be shown that if 𝑝 ∈ 𝑅 𝑎𝑛𝑑 𝑞 > 𝑝, 𝑡ℎ𝑒𝑛 𝑞 ∈ 𝑅. 

Note: We shall quite often use the symbol (𝑥ଵ, 𝑥ଶ) 𝑜𝑟 (𝑦ଵ, 𝑦ଶ) for a cut. 

Ex.1. Let 𝒙𝟏 ≡ 𝒕𝒉𝒆 𝒔𝒆𝒕 𝒐𝒇 𝒂𝒍𝒍 𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓𝒔 < 2 

 And 𝒙𝟐 ≡ 𝒕𝒉𝒆 𝒔𝒆𝒕 𝒐𝒇 𝒂𝒍𝒍 𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓𝒔 < 2. 

 Then (𝑥ଵ, 𝑥ଶ) is not a cut since the rational number 2 occurs neither in 𝑥ଵ nor in 𝑥ଶ so 
that [D1] is not satisfied. 

Ex.2. Let 𝒙𝟏 = {𝒙, 𝒙 ∈ 𝑸|𝒙𝟐 < 2} 

  𝒙𝟐 = {𝒙, 𝒙 ∈ 𝑸|𝒙𝟐 > 2} 

 Here 𝑥ଶ < 2 ⇒ −√2 < 𝑥 < +√2 
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 And 𝑥ଶ > 2 ⇒ 𝑥 > √2 𝑜𝑟 𝑥 < −√2 

Thus according to the mode of division, -1 and 1 both ∈ 𝑥ଵwhile -3 and +3 both ∈ 𝑥ଶ and so 
condition [D3] is not satisfied. 

Hence the division is not a cut. 

1.14. TYPES OF SECTIONS OR CUT 
When the division or partition of rational numbers has been made in the manner as 
above, we may have the following types of sections. 

(i) The lower class 𝐿 has a greatest number and the upper class 𝑅 has no smallest member. 

 Example, consider 𝐿 = {𝑥 ∈ 𝑄: 𝑥 ≤ 5}, 𝑅 = {𝑥 ∈ 𝑄: 𝑥 > 5} . 

In language this means that L is the class of all rational numbers x such that 𝑥 ≤ 5 and 𝑅 is 
the class of all rational number 𝑥 such that 𝑥 > 5. It is obvious that the greatest member of 
𝐿 is 5 but R has no smallest member. To show this we take on the contrary any rational 
member greater than 5, say 5 + 𝜆 where𝜆 is arbitrarily small, as the smallest member of 𝑅. 

But we know that there are infinity of rational points between 5 and 5 + 𝜆 however𝜆 is 
infinitesimally small positive number. Hence we cannot assert that a particular rational 
number𝛽, is the smallest number of 𝑅 such that all the numbers in 𝑅 are greater than𝛽. 
Thus the upper class 𝑅 has no smallest rational member. 

(ii) The lower class 𝐿 has no greatest member and the upper class 𝑅 has the smallest 
member. 

For example,consider 𝐿 = {𝑥 ∈ 𝑄: 𝑥 < 5}, 𝑅 = {𝑥 ∈ 𝑄: 𝑥 ≥ 5}. 

That is, 𝐿 is the class of all rational numbers 𝑥 such that 𝑥 < 5 and 𝑅 is the class of all 
rational numbers 𝑥 such that 𝑥 ≥ 5. 

Here 𝐿 has no greatest member as per discussion above but 𝑅has the smallest member 5. 

(iii) The lower class 𝐿 has no greatest member and the class has no smallest member. 
For example, consider 
   
 𝐿 = {𝑥 ∈ 𝑄|𝑥 < 0, the number 0 and all those positive 𝑥 s. t. 𝑥ଶ < 2}; 

𝑅 = {𝑥 ∈ 𝑄|𝑥ଶ > 2, 𝑥 > 0} 
We would first of all like to verify that this classification represents a section in 
accordance with the three conditions [D1] to [D3]. 
Condition no. [D1] and condition no [D3] are obvious. To ensure that condition [D2] is 
also satisfied we need to show that there is no rational number which escapes 
classification, For that, we need to show that there is no rational number 𝑥 such that 
𝑥ଶ = 2. 
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But we have shown in Art 1.10 Ex. 1 that 2 is not a rational number i.e. there is no 
rational number whose square is 2. 
Thus condition [D2] is also satisfied. 
Thus we have verified that all the three conditions [D1], [D2], [D3] are satisfied in the 
case of this classification and hence it represents a section. 
Now it remains to be shown that 𝐿 has no greatest member and 𝑅 has no smallest 
member. 
If possible, let us suppose that 𝑘 is the greatest member of 𝐿. Then we have 𝑘 > 0  
and 𝑘ଶ < 2. 
Now, consider the positive number  

We have,  2 − ቀ
ସାଷ

ଷାଶ
ቁ

ଶ

=
ଶ(ଷାଶ)మି(ସାଷ)మ

(ଷାଶ)మ  

     =
ଶ൫ଽାଵଶାସమ൯ି(ଵାଶସାଽమ)

(ଷାଶ)మ  

     =
ଶିమ

(ଷାଶ)మ > 0; 𝑠𝑖𝑛𝑐𝑒 𝑘ଶ < 2. 

Hence   ቂ
ସାଷ

ଷାଶ
ቃ

ଶ

< 2. 

Therefore  ସାଷ

ଷାଶ
∈ 𝐿. 

Also   ସାଷ

ଷାଶ
− 𝑘 =

ସାଷିଷିଶమ

ଷାଶ
=

ଶ൫ଶିమ൯

ଷାଶ
> 0 

Therefore  ସାଷ

ଷାଶ
> 𝑘. 

Thus there is a positive number ସାଷ

ଷାଶ
in L which is greater than 𝑘 and hence 𝑘 ceases to 

be the greatest member of 𝐿. So we get a contradiction and therefore the lower class 
𝐿 has no greatest member. 
Similarly it can be shown that if we assume that 𝑘 is the least member of 𝑅 so that 

𝑘ଶ > 2, then it can be shown exactly as before thatସାଷ

ଷାଶ
 is still a smaller member of 𝑅 

and therefore we get a contradiction. Hence the upper class 𝑅 has no least member. 

(iv) The classification is inadmissible. To see this, let𝛼 be the greatest member of 𝐿 and𝛽 

be the least member of 𝑅 so that 𝛼 < 𝛽. Thenఈାఉ

ଶ
 will be a positive rational number 

lying between𝛼 and𝛽 and so could belong neither to 𝐿 nor to 𝑅 and this contradicts 
our condition [D2] that every rational number belongs to one class or the other. 
Thus we see that a section 𝐿, 𝑅 will be only one of the following types- 
(i) 𝐿 has no greatest member but 𝑅 has a least; 
(ii) 𝐿has a greatest member but 𝑅 has no least; 
(iii) 𝐿has no greatest member and 𝑅 has no least. 

In the first two cases we say that the section corresponds to a rational number 𝛼 = 5 because 
the section is generated by the rational number 5. 

In the first case, the greatest member of 𝐿 is 5 and in the second case, the least member of 𝑅 is 
5. 
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Thus whenever the section (𝐿, 𝑅) of rationalsbe such that either the lower class L has the 
greatest member or the upper class has the least member we say that the section corresponds 
to a rational number. And such sections or cuts are called rational cuts. 

In the third case, the section (𝐿, 𝑅) is generated by non-rational number and is such that 
neither the lower class 𝐿 has the greatest member nor the upper class 𝑅 has the least member 
and therefore we say that the section corresponds to an irrational number. Such cuts are called 
irrational cuts. 

1.15. REAL RATIONAL NUMBERS AND IRRATIONAL NUMBERS 

The section (𝐿, 𝑅) of rationals which corresponds to a rational number is called a real 
rational number and the section (𝐿, 𝑅) of rationals which does not correspond to a 
rational number is called a real irrational number. 

Henceforth a Dedekind cut shall also be referred as a real number (whether rational or 
irrational) and the collection of all cuts will be called the system of real numbers. 

We shall denote the system of real numbers by the symbol 𝑅. 

Note: We have stated above that if a section(𝐿, 𝑅) of rationals be such that when either 
(i) L has a greatest member and 𝑅has no least or (ii) 𝐿 has no greatest member and 𝑅 
has the least member; then the section corresponds to a rational number. In order to 
avoid ambiguity, we will only say that if the section(𝐿, 𝑅) of rationals be such that 𝐿 has 
no greatest member, and R has the least, then the section will correspond to a rational 
number. The advantage of this adoption will be the following. 

First, if L has no greatest member and R has the least, then the section will correspond 
to a rational number; and secondly if L has no greatest member, so that only one 
sentence viz. L has no greatest member will serve the purpose of both cases. 
Consequently we have the following alternative definition of Dedekind’s cut which will 
often be used for simplicity and convenience. 
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1.16.  NEED BASED MODIFIED DEFINITION OF DEDEKIND’S CUT 
A Dedekind’s cut (or simply a cut) is an ordered pair of sets of rational numbers having 
the following properties: 
[D1]: 𝑥ଵ ≠ ∅, 𝑥ଶ ≠ ∅ 
[D2]: 𝑥ଵ ∪ 𝑥ଶ = 𝑄. 
[D3]: Every rational number in 𝑥ଵ is less than every rational number in 𝑥ଶ 
[D4]: 𝑥ଵ does not possess a greatest rational number. 
Quite analoguously, another definition of Dedekind’s cut has been advanced as follows: 
A subset𝛼 of rational numbers is said to be a cut if 
(i) 𝛼 ≠ ∅ And also 𝛼 ≠ 𝑄 
(ii) If p ∈ α and q < 𝑝 (q rational), then q ∈ α 
(iii) α Contains no largest rational. Thus if p ∈ α, there exists q ∈ α s. t. q > 𝑝. 

Note: Since α does not carry the sense of a cut, therefore we shall adhere to the 
modified definition above, although it is quite obvious that 𝑥ଵ = α and 𝑥ଶ = αᇱ 
(complement of α ). Any  

1.17. THEOREM 
𝑳𝒆𝒕 (𝒙𝟏, 𝒙𝟐)be any section of rational numbers and 𝞮 > 𝟎 be any given rational 
number number. Then there exist 𝒙 ∈ 𝒙𝟏 and 𝒚 ∈ 𝒙𝟐 such that 𝒚 − 𝒙 = 𝞮. 
𝑷𝒓𝒐𝒐𝒇:Let 𝒂 ∈ 𝒙𝟏and 𝒃 ∈ 𝒙𝟐. 

We know that the set of rational number is Archimedean, therefore there exists a positive 
integer 𝑛 such that  

       𝑛𝑘 > 𝑏 − 𝑎 𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑎 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟. 

 This⇒   𝑎 + 𝑛𝑘 > 𝑏. 

 Consider the set of rational numbers 

       𝑎, 𝑎 + 𝑘, 𝑎 + 2𝑘, … 𝑎 + 𝑛𝑘 

 Now   𝑎 ∈ 𝑥ଵ𝑎𝑛𝑑 𝑎 + 𝑛𝑘(> 𝑏) ∈ 𝑥ଶ. 

 Therefore there exist two consecutive members of the set (1), say 

       𝑎 + 𝑟𝑘, 𝑎 + (𝑟 + 1)𝑘 

such that    𝑎 + 𝑟𝑘 ∈ 𝑥ଵ, 𝑎 + (𝑟 + 1)𝑘 ∈ 𝑥ଶ. 

Writing 𝑥 = 𝑎 + 𝑟𝑘 𝑎𝑛𝑑 𝑦 = 𝑎 + (𝑟 + 1)𝑘 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠. 

1.18. THEOREM 
𝑳𝒆𝒕 (𝒙𝟏, 𝒙𝟐) Any section of rational numbers and let 𝒌 > 1 be any given rational 

number number. Then there exist 𝒙 ∈ 𝒙𝟏 and 𝒚 ∈ 𝒙𝟐 such that 𝒚
𝒙

= 𝒌. 
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𝑷𝒓𝒐𝒐𝒇: Let 𝒂 ∈ 𝒙𝟏and 𝒃 ∈ 𝒙𝟐. 

 Since 𝑘 > 1, we can write 𝑘 = 1 + 𝑙, 𝑙 > 0.  

 Now 𝑘 is given to be a rational number, therefore 𝑙 is a rational number and 
consequently 𝑎𝑙 is a rational number. We know that the set of rational number is Archimedean, 
therefore there exists a positive integer 𝑛 such that  

    𝑛𝑎𝑙 > 𝑏 − 𝑎 ⇒ 𝑎 + 𝑛𝑎𝑙 > 𝑏 

        ⇒ 𝑎(1 + 𝑛𝑙) > 𝑏. 

 Consider the set of rational numbers 

  𝑎, 𝑎𝑘, 𝑎𝑘ଶ, … 𝑎𝑘 

 Since  𝑎𝑘 = 𝑎(1 + 𝑙) > 𝑎(1 + 𝑛𝑙) > 𝑏 

 ∴     𝑎𝑘 ∈ 𝑥ଶ. 

 Thus we find that 𝑎 ∈ 𝑥ଵ 𝑎𝑛𝑑 𝑎𝑘 ∈ 𝑥ଶ. 

This ⇒ that there exists two consecutive members, say 𝑎𝑘 , 𝑎𝑘ାଵ of the set (1) such that 

𝑎𝑘 ∈ 𝑥ଵ 𝑎𝑛𝑑 𝑎𝑘ାଵ ∈ 𝑥ଶ.  

Writing 𝑥 = 𝑎𝑘 𝑎𝑛𝑑 𝑦 = 𝑎𝑘ାଵ 𝑤𝑒 𝑓𝑖𝑛𝑑 
௬

௫
= 𝑘 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 𝑖𝑠 𝑝𝑟𝑜𝑣𝑒𝑑. 
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1.19. THE ZERO CUT 
The cut corresponding to the rational number 0 is called a zero cut. This we shall always 
denote by the symbol O∗ = (Oଵ, Oଶ). Thus Oଵ ≡ the set consisting of all rational 
numbers ≤ 0 and Oଶ ≡ the set consisting of all rational numbers > 0 

1.20. POSITIVE AND NEGATIVE CUTS 
We say that a cut (𝑥ଵ, 𝑥ଶ) is positive if 𝑥ଵ, 𝑥ଶ > (Oଵ, Oଶ) and negative if 𝑥ଵ, 𝑥ଶ <

(Oଵ, Oଶ). 

1.21. EQUALITY OF TWO CUTS 
Let 𝛼 = (𝑥ଵ, 𝑥ଶ) 𝑎𝑛𝑑 𝛽 = (𝑦ଵ, 𝑦ଶ) 𝑏𝑒 𝑐𝑢𝑡𝑠. 
We say 𝛼 = 𝛽 if every member of 𝑥ଵ is a member of and 𝑦ଵ every member of 𝑦ଵ is a 
member of 𝑥ଵ, i.e. if 𝑥ଵ = 𝑦ଵ. 
Obviously, 𝑥ଵ = 𝑦ଵ ⇒ 𝑥ଶ = 𝑦ଶ and conversely. Thus in order to establish the equality of 
two cuts, it suffices to show that their lower classes are identical or their upper classes 
are identical. 

1.22. SUM OF TWO CUTS     [M.U. 90H, 92H] 
In order to define the sum of two cuts 𝛼 = (𝑥ଵ, 𝑥ଶ), 𝛽 = (𝑦ଵ, 𝑦ଶ) we consider the 
following two classes: 
(i) The class 𝑧ଵ consisting of all rational numbers 𝑧ଵ of the form 𝑧ଵ = 𝑥ଵ + 𝑦ଵ where 𝑥ଵ 

denotes any member of 𝑥ଵ and 𝑦ଵ any member of 𝑦ଵ. 
(ii) The class 𝑧ଶ consisting of all other rational numbers. 

We shall first verify that the ordered pair 𝑦 = (𝑧ଵ, 𝑧ଶ) is in fact a cut. 

(i) Clearly 𝑦 = (𝑧ଵ, 𝑧ଶ) is not contain every rational. 
(ii) Next we show that 𝑧ଵ does not contain every rational. 

  Let 𝑢 ∈ 𝑥ଶand 𝑣 ∈ 𝑦ଶ; 𝑢 and 𝑣 are rationals. 

(iii) Suppose 𝑢 ∈ 𝑧ଵand 𝑡 < 𝑢. It is to be shown that 𝑡 also  

  Since 𝑢 ∈ 𝑧ଵ, therefore 𝑢 = 𝑝 + 𝑞 for some 𝑝 ∈ 𝑥ଵ and 𝑞 ∈ 𝑦ଵ. 

  Choose a rational 𝑘 such that 𝑡 = 𝑘 + 𝑞. Then since 𝑡 < 𝑢,therefore 𝑘 < 𝑝. Hence 
𝑘 ∈ 𝑥ଵ. 

  Thus we see that 𝑡 = 𝑘 + 𝑞 where 𝑘 ∈ 𝑥ଵand 𝑞 ∈ 𝑦ଵ.  

  Hence 𝑡 ∈ 𝑧ଵ. 

(iv) Suppose 𝑟 ∈ 𝑧ଵ. 

  Then 𝑟 = 𝑝 for some 𝑝 ∈ 𝑥ଵand 𝑞 ∈ 𝑦ଵ. 

  Since (𝑥ଵ, 𝑥ଶ) is a cut, therefore there is a rational 𝑢 > 𝑝 such that 𝑢 ∈ 𝑥ଵ. 
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  Hence 𝑢 + 𝑞 ∈ 𝑧ଵ, since 𝑢 ∈ 𝑥ଵ and 𝑞 ∈ 𝑦ଵ. 

  Also, 𝑢 + 𝑞 > 𝑝 + 𝑞 = 𝑟 so that r is not the largest rational in𝑧ଵ. 

Hence𝑧ଵ does not contain the largest rational. 

Thus we see that all the three conditions are satisfied and hence𝑦 = (𝑧ଵ, 𝑧ଶ) is a cut. 
This cut is called the sum of two cuts(𝑥ଵ, 𝑥ଶ) + (𝑦ଵ, 𝑦ଶ) and we have(𝑧ଵ, 𝑧ଶ) =

(𝑥ଵ, 𝑥ଶ) + (𝑦ଵ, 𝑦ଶ). i.e. 𝛾 = 𝛼 + 𝛽. 

1.23. THE NEGATIVE OF A CUT 
Let 𝛼 = (𝑋ଵ, 𝑋ଶ) be any cut. Form two classes𝑌ଵ and𝑌ଶ such that𝑌ଵ consists of all rational 
numbers𝑦ଵ of the form𝑦ଵ < −𝑥ଶ where𝑥ଶ is some member of𝑋ଶ (except when𝑥ଶ is the 
least member of𝑋ଶ) and𝑦ଶ consists of all rational members𝑦ଶ of the form𝑦ଶ ≥ −𝑥ଵ 
Where𝑥ଵ is a member of𝑋ଵ together with the negative of the greatest member of𝑋ଵ if 
such a member exists. 
In other words,𝑌ଵ is the set of all rationals𝑥ଶ such that−𝑥ଶ is an upper bound of𝑌ଵ but 
not the smallest upper bound. 
We have to verify that[𝑌ଵ, 𝑌ଶ] is a cut. For this, we need to verify that [𝑌ଵ, 𝑌ଶ]satisfies the 
three conditions of a cut. 

(i) Since[𝑋ଵ, 𝑋ଶ] is a cut,𝑥ଶ is not the empty set and therefore[𝑌ଵ, 𝑌ଶ] is not an empty set. 

Moreover,(𝑋ଵ, 𝑋ଶ) is not the empty set and hence there exists𝑎 ∈ 𝑋ଵ.Then−𝑎 ∉ 𝑌ଵ, 
since otherwise we would have−𝑎 < −𝑥ଶ for some𝑥ଶ ∈ 𝑋ଶ and this would imply 
that𝑥ଶ < 𝑎. Thus we get a contradiction that every element of𝑋ଶ is greater than every 
element of 𝑋ଵ. 

Since – 𝑎 ∉ 𝑌ଵ, 𝑌ଵ ≠ Q. 

(ii) Let𝑝 ∈ 𝑌ଵ and𝑞 < 𝑝 (a rational). We want to show that𝑞 ∈ 𝑌ଵ. 

 Since𝑝 ∈ 𝑌ଵ, therefore−𝑝 ∉ 𝑋ଵ as in case (i). i.e. −𝑝 ∈ 𝑋ଶ and−𝑞 > −𝑝. 

 But  𝑌ଵ = {𝑦ଵ|𝑦ଵ < −𝑝 for some𝑝 ∈ 𝑋ଶ}. 

 Which we can write as 

     𝑌ଵ = {𝑦ଵ|𝑦ଵ > 𝑝for some 𝑝 ∈ 𝑋ଶ} 

 Which further means that 

   𝑌ଵ = {𝑦ଵ|𝑦ଵ < −𝑝for some −𝑝 ∈ 𝑋ଶ}. 

This in conjunction with the inequality−𝑞 > −𝑝 will mean that 𝑞 ∈ 𝑌ଵ. 

(iii)If𝑦 ∈ 𝑌ଵ, then𝑦 < −𝑝 for some element𝑝 of𝑋ଶ. 
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 Now,𝑦 <
௬ି

ଶ
< −𝑝 and therefore௬ି

ଶ
∈ 𝑌ଵ. 

 This shows that there is no largest element of 𝑌ଵ. 

 Thus we have shown that[𝑌ଵ, 𝑌ଶ] is a cut which is called the negative or additive inverse 
of(𝑋ଵ, 𝑋ଶ) and is denoted by the symbol−(𝑋ଵ, 𝑋ଶ)i. e. by − 𝛼. 
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1.24. EXISTENCE OF ADDITIVE INVERSE 
Theorem: Let (𝑿𝟏, 𝑿𝟐) be any cut. To prove that 
      (𝑿𝟏, 𝑿𝟐)+[-(𝑿𝟏, 𝑿𝟐)] = (𝐎𝟏, 𝐎𝟐). 
Proof: Let us define, as before 
     𝑌ଵ = {𝑦: 𝑦 ∈ 𝑄|𝑦 < −𝑝for some 𝑝 ∈ 𝑋ଶ}. 
We have proved in the preceding theorem that(𝑌ଵ, 𝑌ଶ) is a cut. 
We want to prove that (𝑋ଵ, 𝑋ଶ) + (𝑌ଵ, 𝑌ଶ) = (Oଵ, Oଶ). 
For this, suppose that𝑟 ∈ 𝑋ଵ + 𝑌ଵ. 
Then we can write 𝑟 = 𝑝 + 𝑞 where 𝑝 ∈ 𝑋ଵand 𝑞 ∈ 𝑌ଵ. 
Since 𝑞 ∈ 𝑌ଵ    ∴  −𝑞 ∉ 𝑋ଵ i.e.−𝑞 ∈ 𝑋ଶ 
Now (𝑝 ∈ 𝑋ଵ 𝑎𝑛𝑑 − 𝑞 ∈ 𝑋ଶ) ⇒ −𝑞 > 𝑝 ⇒ 𝑝 + 𝑞 < 0. 
        ⇒ 𝑟 < 0 ⇒ 𝑟 ∈ Oଵ. 

 Thus we find that 𝑟 ∈ Xଵ + Yଵ ⇒ 𝑟 ∈ Oଵ    …(1) 

 Again, suppose 𝑟 ∈ Oଵ. Then 𝑟 < 0. 

We know (theorem 1.17) that there are rationals𝑝 ∈ Xଵ, 𝑞 ∈ Xଶ such that 𝑞 − 𝑝 = −𝑟. 

Now  𝑞 ∈ Xଶ ⇒ −𝑞 ∈ Yଵ. 

∴  From −𝑟 = 𝑞 − 𝑝, we get 𝑟 = 𝑝 − 𝑞 where 𝑝 ∈ Xଵand −𝑞 ∈ Yଵ. 

Hence    𝑟 ∈ Xଵ + Yଵ. 

Thus we find that 𝑟 ∈ Oଵ ⇒ 𝑟 ∈ Xଵ + Yଵ     …(2) 

Combining (1) and (2), we get Xଵ + Yଵ = Oଵ. 

This completes the proof. 

1.25. SUBTRACTION 
We define the difference (𝑋ଵ, 𝑋ଶ) − (𝑌ଵ, 𝑌ଶ) of two cuts(𝑋ଵ, 𝑋ଶ) and(𝑌ଵ, 𝑌ଶ) by the 
equation 
(𝑋ଵ, 𝑋ଶ) − (𝑌ଵ, 𝑌ଶ) = (𝑋ଵ, 𝑋ଶ) + {−(𝑌ଵ, 𝑌ଶ)} 

 And so the idea of subtraction is included in the idea of addition. 

1.26. EXISTENCE OF ZERO ELEMENT 
Theorem :𝑰𝒇 (𝑿𝟏, 𝑿𝟐) 𝒃𝒆 𝒂𝒏𝒚 𝒄𝒖𝒕, 𝒕𝒉𝒆𝒏 
       (𝑿𝟏, 𝑿𝟐) + (𝐎𝟏, 𝐎𝟐) = (𝑿𝟏, 𝑿𝟐). 
𝑷𝒓𝒐𝒐𝒇 ∶ Let (𝒁𝟏, 𝒁𝟐) = (𝑿𝟏, 𝑿𝟐) + (𝐎𝟏, 𝐎𝟐) 

 Let     𝑟 ∈ 𝑍ଵ. 

 Then 𝑟 = 𝑝 + 𝑞 where 𝑝 ∈ 𝑋ଵ and 𝑞 ∈ Oଵ i.e. 
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 Now 𝑝 + 𝑞 < 𝑝, since 𝑞 < 0. 

 But 𝑝 ∈ 𝑋ଵ  ∴ 𝑝 + 𝑞 < 𝑋ଵ i.e. 𝑟 ∈ 𝑋ଵ. 

 Thus we find 𝑟 ∈ 𝑍ଵ ⇒ 𝑟 ∈ 𝑋ଵ      …(1) 

 Again, let 𝑟 ∈ 𝑋ଵ. Choose 𝑠 > 𝑟, 𝑠 rational such that 𝑠 ∈ 𝑋ଵ. 

 Put 𝑞 = 𝑟 − 𝑠. Then 𝑞 < 0.  ∴ 𝑞 ∈ Oଵ. 

 From 𝑞 = 𝑟 − 𝑠, we have 𝑟 = 𝑠 + 𝑞 

 Where 𝑠 ∈ 𝑋ଵand 𝑞 ∈ Oଵ. 

 Hence 𝑟 ∈ 𝑍ଵ. 

 Thus we find that 𝑟 ∈ 𝑋ଵ      …(2) 

 Combining (1) and (2), we get 𝑍ଵ ∈ 𝑋ଵ. 

Hence 𝑋ଵ is identical with the lower class (𝑋ଵ, 𝑋ଶ) + (Oଵ, Oଶ) and we conclude (𝑋ଵ, 𝑋ଶ) +

(Oଵ, Oଶ) + (𝑋ଵ, 𝑋ଶ) 

1.27. COMMUTATIVE LAW OF ADDITION 
Theorem :𝑳𝒆𝒕 𝜶, 𝜷 𝒃𝒆 𝒂𝒏𝒚 𝒕𝒘𝒐 𝒄𝒖𝒕𝒔. 𝑻𝒉𝒆𝒏 𝜶 + 𝜷 = 𝜷 + 𝜶. 
[R.U. 69H; M.U. 72H, 90H; Bhag. 74H] 
Proof :Let 𝛼 = (𝑋ଵ, 𝑋ଶ) 𝑎𝑛𝑑 𝛽 = (𝑌ଵ, 𝑌ଶ) be any two cuts. 
Let    (Uଵ, Uଶ) = (𝑋ଵ, 𝑋ଶ) + (𝑌ଵ, 𝑌ଶ) 
And  (Vଵ, Vଶ) = (𝑌ଵ, 𝑌ଶ) + (𝑋ଵ, 𝑋ଶ). 
Now, according to the definition, the lower classUଵ consists of all rational numbers of 
the form𝑥ଵ + 𝑦ଵ where𝑥ଵ and𝑦ଵ belong to𝑋ଵ and𝑋ଶ respectively. 
Similarly lower class Vଵ is the set of all rational numbers of the form 𝑥ଵ + 𝑦ଵ with 
𝑦ଵ ∈ 𝑌ଵand 𝑥ଵ ∈ 𝑋ଵ. 
Since 𝑥ଵ + 𝑦ଵ = 𝑦ଵ + 𝑥ଵ; for the rational numbers are commutative, it follows that the 
setUଵ andVଵ are identical and hence (Uଵ, Uଶ) = (Vଵ, Vଶ). 
That is,   (𝑋ଵ, 𝑋ଶ) + (𝑌ଵ, 𝑌ଶ) = (𝑌ଵ, 𝑌ଶ) + (𝑋ଵ, 𝑋ଶ) 
i.e.     𝛼 + 𝛽 = 𝛽 + 𝛼. 

1.28. ASSOCIATIVE LAW OF ADDITION 
Theorem :Let 𝜶, 𝜷, 𝜸 be any cuts. Then (𝜶 + 𝜷) + 𝜸 = 𝜶 + (𝜷 + 𝜸) 
[M.U. 90H] 
Proof :Let 𝛼 = (𝑋ଵ, 𝑋ଶ), 𝛽 = (𝑌ଵ, 𝑌ଶ), 𝛾 = (𝑍ଵ, 𝑍ଶ) be any three cuts. 
Let   (Uଵ, Uଶ) = {(𝑋ଵ, 𝑋ଶ) + (𝑌ଵ, 𝑌ଶ)} + (𝑍ଵ, 𝑍ଶ) 
And (Vଵ, Vଶ) = (𝑋ଵ, 𝑋ଶ) + {(𝑌ଵ, 𝑌ଶ) + (𝑍ଵ, 𝑍ଶ)}. 
Then as per definition, any member ofUଵ is of the form(𝑥ଵ + 𝑦ଵ) + 𝑧ଵ and that ofVଵ is of 
the form𝑥ଵ + (𝑦ଵ + +𝑧ଵ)where𝑥ଵ ∈ 𝑋ଵ, 𝑦ଵ ∈ 𝑌ଵand𝑧ଵ ∈ 𝑍ଵ. 
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Since(𝑥ଵ + 𝑦ଵ) + 𝑧ଵ = 𝑥ଵ + (𝑦ଵ + +𝑧ଵ) because the associative law holds for rational 
numbers, thereforeUଵ = Vଵ which means that 
{(𝑋ଵ, 𝑋ଶ) + (𝑌ଵ, 𝑌ଶ)} + (𝑍ଵ, 𝑍ଶ) = (𝑋ଵ, 𝑋ଶ) + {(𝑌ଵ, 𝑌ଶ) + (𝑍ଵ, 𝑍ଶ)} 

 i.e.      (𝜶 + 𝜷) + 𝜸 = 𝜶 + (𝜷 + 𝜸). 

1.29. MULTIPLICATION OF CUTS 
𝐈. Product of two cuts 

 Definition- 𝐿𝑒𝑡(𝑋ଵ, 𝑋ଶ) and (𝑌ଵ, 𝑌ଶ) be two non-negative cuts. In order to define the 
product(𝑍ଵ, 𝑍ଶ) of(𝑋ଵ, 𝑋ଶ) and(𝑌ଵ, 𝑌ଶ) we form the class𝑍ଵ consisting of all rational numbers of 
the form𝑧ଵ = 𝑥ଵ𝑦ଵ where𝑥ଵ ∈ 𝑋ଵ and𝑦ଵ ∈ 𝑌ଵ and the class𝑍ଶ consisting of all other rational 
numbers. 

It is easy to verify that the ordered pair(𝑍ଵ, 𝑍ଶ) is actually a cut called the product of two 
cuts(𝑋ଵ, 𝑋ଶ) and(𝑌ଵ, 𝑌ଶ) and we write 

(𝑍ଵ, 𝑍ଶ) = (𝑋ଵ, 𝑋ଶ)(𝑌ଵ, 𝑌ଶ). 

The definition of the product can easily be extended to negative cuts. 

If(𝑋ଵ, 𝑋ଶ) is negative and(𝑌ଵ, 𝑌ଶ) is non-negative, then their product is defined as 

(𝑋ଵ, 𝑋ଶ)(𝑌ଵ, 𝑌ଶ) = −[{−(𝑋ଵ, 𝑋ଶ)}(𝑌ଵ, 𝑌ଶ)]. 

If(𝑋ଵ, 𝑋ଶ) and(𝑌ଵ, 𝑌ଶ) are both negative, then we define their product as 

(𝑋ଵ, 𝑋ଶ)(𝑌ଵ, 𝑌ଶ) = −[−(𝑋ଵ, 𝑋ଶ)][−(𝑌ଵ, 𝑌ଶ)]. 

II. The unit cut 

The cut corresponding to the rational number 1 is called the unit cut. We shall denote it by the 
symbol (𝐼ଵ, 𝐼ଶ). Thus 

𝑙ଵ =the set of all rational numbers< 1 and 𝐼ଶ consists of all other rational numbers. 

Theorem : To prove that for any cut (𝑿𝟏, 𝑿𝟐), 

(𝑿𝟏, 𝑿𝟐)(𝑰𝟏, 𝑰𝟐) = (𝑿𝟏, 𝑿𝟐) 

Proof :Let (𝑍ଵ, 𝑍ଶ) = (𝑋ଵ, 𝑋ଶ)(𝐼ଵ, 𝐼ଶ). 

Let      𝑧ଵ ∈ 𝑍ଵ. 

Then there exist numbers𝑥ଵ ∈ 𝑋ଵ and𝑒ଵ ∈ 𝐼ଵ such that𝑧ଵ = 𝑥ଵ𝑒ଵ. However since 𝑒ଵ < 1, it 
follows that𝑧ଵ < 𝑥ଵ and consequently𝑧ଵ ∈ 𝑋ଵ. 

Thus we find that 𝑧ଵ ∈ 𝑍ଵ ⇒ 𝑧ଵ ∈ 𝑋ଵ     …(1) 
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Conversely, let𝑥ଵ
ᇱ ∈ 𝑋ଵ. Then since𝑋ଵ does not possess the greatest member, there exists𝑥ଵ

ᇳ in 

𝑋ଵ such that𝑥ଵ
ᇳ > 𝑥ଵ

ᇱ, so that௫భ
ᇲ

௫భ
ᇴ < 1 and consequently belongs to𝐼ଵ. 

Writing   𝑥ଵ
ᇱ = 𝑥ଵ

ᇳ ቀ
௫భ

ᇲ

௫భ
ᇴቁ 

We see that𝑥ଵ
ᇱ has been expressed as the product of a member of𝑋ଵ and a member of 

𝐼ଵHence𝑥ଵ
ᇱ ∈ 𝑍ଵ. 

Thus  𝑥ଵ
ᇱ ∈ 𝑋ଵ ⇒ 𝑥ଵ

ᇱ ∈ 𝑍ଵ   …(2) 

Combining (1) and (2), we get 𝑍ଵ = 𝑋ଵand hence the result follows: 

𝐈𝐈𝐈. Commutative law of multiplication 

Let 𝜶 = (𝑿𝟏, 𝑿𝟐) 𝐚𝐧𝐝 𝛃 = (𝒀𝟏, 𝒀𝟐) be any two cuts. Then 
(𝑿𝟏, 𝑿𝟐)(𝒀𝟏, 𝒀𝟐) = (𝒀𝟏, 𝒀𝟐)(𝑿𝟏, 𝑿𝟐) i.e. 𝜶𝜷 = 𝜷𝜶. 

Proof :Let  (Uଵ, Uଶ) = (𝑋ଵ, 𝑋ଶ) + (𝑌ଵ, 𝑌ଶ) 

And      (Vଵ, Vଶ) = (𝑌ଵ, 𝑌ଶ) + (𝑋ଵ, 𝑋ଶ). 

Let 𝑢ଵ ∈ 𝑈ଵand vଵ ∈ Vଵ. 

Then 𝑢ଵis of the form𝑥ଵ𝑦ଵ where𝑥ଵ ∈ 𝑋ଵ and𝑦ଵ ∈ 𝑌ଵ. 

𝑣ଵis of the form𝑥ଵ𝑦ଵ where “ “ “ 

Since the commutative law holds for rational numbers, therefore we have 𝑥ଵ𝑦ଵ = 𝑦ଵ𝑥ଵ. 

It follows thatUଵ = Vଵ and consequently (Uଵ, Uଶ) = (Vଵ, Vଶ). 

Hence(𝑋ଵ, 𝑋ଶ)(𝑌ଵ, 𝑌ଶ) = (𝑌ଵ, 𝑌ଶ)(𝑋ଵ, 𝑋ଶ). 

𝐈𝐕. Associative law of multiplication 

𝑰𝒇 𝜶 = (𝑿𝟏, 𝑿𝟐) , 𝛃 = (𝒀𝟏, 𝒀𝟐) 𝐚𝐧𝐝 (𝒁𝟏, 𝒁𝟐)are any three cuts, then 
[(𝑿𝟏, 𝑿𝟐)(𝒀𝟏, 𝒀𝟐)](𝒁𝟏, 𝒁𝟐) = (𝑿𝟏, 𝑿𝟐)[(𝒀𝟏, 𝒀𝟐)(𝒁𝟏, 𝒁𝟐)] 

i.e.    (𝜶𝜷)𝜸 = 𝜶(𝜷𝜸). …(1) 

[M.U. 69H; R.U. 73H] 

Proof :Any member of the lower class of the cut on the L.H.S. of (1) is of the form (𝑥ଵ𝑦ଵ)𝑧ଵ and 
that of the R.H.S. of (1) is of the form 𝑥ଵ(𝑦ଵ𝑧ଵ) where 𝑥ଵ ∈ 𝑋ଵ, 𝑦ଵ ∈ 𝑌ଵ𝑎𝑛𝑑 𝑧ଵ ∈ 𝑍ଵ 

Since the associative law holds for rational numbers, we have 

(𝑥ଵ𝑦ଵ)𝑧ଵ = 𝑥ଵ(𝑦ଵ𝑧ଵ). 
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Hence the lower classes of both sides of (1)  are identical and consequently (1) holds. 

𝐕.The distributive laws 

Let 𝜶 = (𝑿𝟏, 𝑿𝟐) , 𝛃 = (𝒀𝟏, 𝒀𝟐) 𝐚𝐧𝐝 (𝒁𝟏, 𝒁𝟐) be any three cuts. 

Then 

(i) 𝜶(𝜷 + 𝜸) = 𝜶𝜷 + 𝜶𝜸 
(ii) (𝜶 + 𝜷)𝜸 = 𝜶𝜸 + 𝜷𝜸. 

Proof :First we suppose that𝛼, 𝛽, 𝛾 are positive cuts, i.e.𝛼 > 0, 𝛽 > 0 and𝛾 > 0. 

Let     (Uଵ, Uଶ) = 𝛼(𝛽 + 𝛾) 

       = (𝑋ଵ, 𝑋ଶ)[(𝑌ଵ, 𝑌ଶ)(𝑍ଵ, 𝑍ଶ)] 

and     (Vଵ, Vଶ) = 𝛼𝛽 + 𝛼𝛾 

     = (𝑋ଵ, 𝑋ଶ)(𝑌ଵ, 𝑌ଶ) + (𝑋ଵ, 𝑋ଶ)(𝑍ଵ, 𝑍ଶ). 

Now, all the negative rational numbers and the number 0 are necessarily members ofUଵandVଵ. 
The positive members of Uଵare of the type𝑥ଵ(𝑦ଵ + 𝑧ଵ) and the positive members of Vଵare of 
the type 𝑥ଵ𝑦ଵ + 𝑥ଵ

ᇱ𝑧ଵwhere𝑥ଵ, 𝑥ଵ
ᇱ are any positive members in𝑋ଵ and𝑦ଵ𝑧ଵ are any positive 

members of 𝑌ଵ, 𝑍ଵrespectively. 

Since the distributive law holds for rational numbers, we have 

𝑥ଵ(𝑦ଵ + 𝑧ଵ) = 𝑥ଵ𝑦ଵ + 𝑥ଵ𝑧ଵ. 

On taking𝑥ଵ
ᇱ = 𝑥ଵ,  we see that every positive membersUଵ is also a member ofVଵ. 

Again any member𝑥ଵ𝑦ଵ + 𝑥ଵ
ᇱ𝑧ଵof Vଵis clearly a member ofUଵif𝑥ଵ

ᇱ = 𝑥ଵ. 

If  𝑥ଵ > 𝑥ଵ
ᇱ so that ௫భ

ᇲ

௫భ
< 1, we write 

 𝑥ଵ
ᇱ𝑧ଵ = 𝑥ଵ ቀ

௫భ
ᇲ

௫భ
ቁ 𝑧ଵ = 𝑥ଵ𝑧ଵ

ᇱwhere 𝑧ଵ
ᇱ =

௫భ
ᇲ

௫భ
𝑧ଵ. 

Now  𝑧ଵ
ᇱ ௫భ

ᇲ

௫భ
𝑧 < 𝑧; 𝑠𝑖𝑛𝑐𝑒 

௫భ
ᇲ

௫భ
< 1. 

∴          𝑧ଵ
ᇱ ∈  𝑍ଵ. 

Thus 𝑥ଵ𝑦ଵ + 𝑥ଵ
ᇱ𝑧ଵ = 𝑥ଵ𝑦ଵ + 𝑥ଵ𝑧ଵ

ᇱ = 𝑥ଵ(𝑦ଵ + 𝑧ଵ
ᇱ) 

Which clearly belongs to Uଵ. 

In the same way, we can prove that if𝑥ଵ < 𝑥ଵ
ᇱ, then every member ofVଵ is a member ofUଵ. 

HenceUଵ = Vଵ and consequentlyUଶ = Vଶ. 
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Thus we prove the part (i) of the distributive law viz. 

𝛼(𝛽 + 𝛾) = 𝛼𝛽 + 𝛼𝛾 𝑤ℎ𝑒𝑟𝑒 𝛼 > 0, 𝛽 > 0, 𝛾 > 0. 

The part (ii) can similarly be proved. 

Before proceeding to other case, we first prove a lemma viz, 

       = (𝑋ଵ, 𝑋ଶ)[(𝑌ଵ, 𝑌ଶ) − (𝑍ଵ, 𝑍ଶ)] 

       = (𝑋ଵ, 𝑋ଶ)(𝑌ଵ, 𝑌ଶ) − (𝑋ଵ, 𝑋ଶ)(𝑍ଵ, 𝑍ଶ). 

i.e.     𝛼(𝛽 − 𝛾) = 𝛼𝛽 − 𝛼𝛾.      …(1) 

If 𝛽 = 𝛾,then (1) evidently holds. 

If𝛽 > 𝛾then 𝛽 − 𝛾 > 0. 

Therefore, we have 

     𝛼𝛽 = 𝛼[𝛾 + (𝛽 − 𝛾)] 

      = 𝛼𝛾 + 𝛼(𝛽 − 𝛾); from part (i) 

⇒                       𝛼(𝛽 − 𝛾) = 𝛼𝛽 − 𝛼𝛾. 

Thus (1) holds. Similarly it can be shown that (1) holds If𝛽 < 𝛾. 

We now discuss the main result according as𝛼, 𝛽, 𝛾 have different signs. 

Suppose𝛼 > 0, 𝛽 < 0, 𝛾 > 0and𝛽 + 𝛾 > 0. Then we have 

     𝛼𝛾 = 𝛼{(𝛽 + 𝛾) − 𝛽} 

      = 𝛼(𝛽 + 𝛾) − 𝛽; according to lemma 

⇒                       𝛼(𝛽 + 𝛾) = 𝛼𝛽 + 𝛼𝛾. 

Similarly we can discuss other cases. Hence we prove part (i) whether 𝛼, 𝛽, 𝛾 are positive cuts or 
negative cuts in different orders. 
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1.30.  NON JOINT-RECIPROCAL OF A CUT 
Definition-Let (𝑋ଵ, 𝑋ଶ)be any positive cut. Then its reciprocal or multiplicative inverse is 
defined to be the cut(𝑌ଵ, 𝑌ଶ)such that 
(i) The lower class𝑌ଵ contains all negative rational numbers, the numbers, the number 

zero and the reciprocals of all rational numbers in𝑋ଶ excluding the least member 
of𝑋ଶ if that exists. 

(ii) The upper class𝑌ଶ consists of the reciprocals of all positive numbers in𝑋ଵ together 
with the greatest member of𝑋ଵ if there is one. 
It can be easily verified that(𝑌ଵ, 𝑌ଶ) is a cut. 
We shall denote the reciprocal of(𝑋ଵ, 𝑋ଶ) be the symbol(𝑋ଵ, 𝑋ଶ)ିଵ 
If(𝑋ଵ, 𝑋ଶ) is negative, then we define its reciprocal to be−[−(𝑋ଵ, 𝑋ଶ)]ିଵ 
The reciprocal of the zero cut(Oଵ, Oଶ) is not defined. 

Theorem :𝑰𝒇 𝜶 = (𝑿𝟏, 𝑿𝟐) 𝒊𝒔 𝒂𝒏𝒚 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒄𝒖𝒕, 𝒕𝒉𝒆𝒏 

     (𝑿𝟏, 𝑿𝟐)(𝑿𝟏, 𝑿𝟐)ି𝟏 = (𝑰𝟏, 𝑰𝟐) 𝒊. 𝒆. 𝜶. 𝜶ି𝟏 = 𝟏. 

𝐏𝐫𝐨𝐨𝐟 : Let (𝑌ଵ, 𝑌ଶ) = (𝑋ଵ, 𝑋ଶ)ିଵ. 

Then 𝑌ଵ ≡ the set of all negative rational numbers, the number zero and the reciprocals of all 
rational numbers in 𝑋ଶ 

     ≡ 𝑄ିଵ ∪ {𝑦 ∈ 𝑄ା; 𝑦 =
ଵ


, 𝑎 ∈ 𝑋ଶ}. 

We shall use the following symbols : 

[𝑋ଵ] =the set of all +𝑣𝑒 rational in 𝑋ଵ; 

[𝑌ଵ] =the set of all +𝑣𝑒 rational in 𝑌ଵ; 

[𝐼ଵ] =the set of all +𝑣𝑒 rational in 𝐼ଵ; 

Since Oଵ ⊂ 𝑋ଵ, therefore [𝑋ଵ] ≠ ∅. 

Also, there exists an element 𝑎ଵ ∈ 𝑋ଵ such that 𝑎ଵ > 0. 

Therefore the set [𝑌ଵ] = {𝑦 ∈ 𝑄ା; 𝑥 =
ଵ


, 𝑎 ∈ 𝑋ଶ} ≠ ∅. 

This shows that(𝑌ଵ, 𝑌ଶ) as defined above is a +𝑣𝑒 cut. 

Now(𝑋ଵ, 𝑋ଶ) is a +𝑣𝑒 cut and(𝑌ଵ, 𝑌ଶ) is a +𝑣𝑒 cut implies that(𝑋ଵ, 𝑋ଶ)(𝑌ଵ, 𝑌ଶ) is a positive cut. 

Let     (𝑍ଵ, 𝑍ଶ) = (𝑋ଵ, 𝑋ଶ)(𝑌ଵ, 𝑌ଶ) 

And let[𝑍ଵ] ≡ the set of all +𝑣𝑒rationalsin 𝑍ଵ. 

We need to prove that [𝑍ଵ] = [𝐼ଵ] 
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Let     𝑧 ∈ [𝑍ଵ] 

Then 𝑧 = 𝑎𝑏 for some 𝑎 ∈ [𝑋ଵ]and 𝑏 ∈ [𝑌ଵ]. 

Also,   𝑏 ∈ [𝑌ଵ] ⇒ 𝑏 =
ଵ

ᇲ
for𝑎ᇱ ∈ 𝑋ଶ. 

Now,   𝑎 ∈ [𝑋ଵ]and 𝑎ᇱ ∈ 𝑋ଶ ⇒ 𝑎 < 𝑎ᇱ. 

Therefore 𝑧 = 𝑎𝑏 = 𝑎.
ଵ

ᇲ < 1   (∵ 𝑎 < 𝑎ᇱ) 

∴   𝑧 ∈ [𝐼ଵ]. 

Thus    𝑧 ∈ [𝑍ଵ] ⇒ 𝑧 ∈ [𝐼ଵ] 

Hence   [𝑍ଵ] ⊂ [𝐼ଵ]       …(1) 

Again, let 𝑢 ∈ [𝐼] so that 0 < 𝑢 < 1. 

Since    𝑢 < 1 ∴
ଵ

௨
> 1. 

Therefore from the theorem 1.18, there exists an element𝑎ଵ ∈ [𝑋ଵ] 

Such that భ

௨
∈ 𝑋ଶ. 

But   భ

௨
∈ 𝑋ଶ ⇒

௨

భ
∈ [𝑌ଵ]. 

Thus   𝑢 = 𝑎ଵ ∙
௨

భ
 𝑤ℎ𝑒𝑟𝑒 𝑎ଵ ∈ [𝑋ଵ] 𝑎𝑛𝑑 

௨

భ
∈ [𝑌ଵ]. 

This shows that 𝑢 ∈ [𝑍ଵ]. 

∴   𝑢 ∈ [𝐼ଵ] ⇒ 𝑢 ∈ [𝑍ଵ]. 

Hence    [𝐼ଵ] ⊂ [𝑍ଵ].      …(2) 

From (1) and (2), we find that [𝑍ଵ] = [𝐼ଵ] and consequently, 

    (𝑍ଵ, 𝑍ଶ) = (𝐼ଵ, 𝐼ଶ). 

Hence the theorem is proved. 

Cor. It follows from above that if𝛼 = (𝑋ଵ, 𝑋ଶ) is a negative cut, then there exist a cut𝛽 =

(𝑌ଵ, 𝑌ଶ) such that𝛼𝛽 = (𝐼ଵ, 𝐼ଶ); of course𝛽 should be a negative cut. 

This follows as under. 

Let 𝛼 = (𝑋ଵ, 𝑋ଶ) be a negative cut, therefore −(𝑋ଵ, 𝑋ଶ) is a positive cut. Similarly −(𝑌ଵ, 𝑌ଶ) is a 
+𝑣𝑒 cut. 
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By the preceeding theorem there exists a cut 𝛽 = −(𝑌ଵ, 𝑌ଶ) such that 𝛼𝛽 i.e. 
[−(𝑋ଵ, 𝑋ଶ)][−(𝑌ଵ, 𝑌ଶ)] 

i.e.  (𝑋ଵ, 𝑋ଶ)(𝑌ଵ, 𝑌ଶ) = (𝐼ଵ, 𝐼ଶ). 

Thus we prove that for each non-zero cut 𝛼, there exists a cut 𝛽 such that 𝛼𝛽 = (𝐼ଵ, 𝐼ଶ). 

Note :𝛽 is called a multiplicative inverse of 𝛼. 

Division – We define the division of a cut(𝑋ଵ, 𝑋ଶ) by a non-zero cut(𝑌ଵ, 𝑌ଶ)by 

(𝑋ଵ, 𝑋ଶ)(𝑌ଵ, 𝑌ଶ)ିଵand denote it by
(భ,మ)

(భ,మ)
. 

The division by the zero cut is not defined. 

1.31. ORDER RELATION IN CUTS 
Let 𝛼 = (𝑋ଵ, 𝑋ଶ) and 𝛽 = (𝑌ଵ, 𝑌ଶ) be two cuts. 
Then 𝛼 < 𝛽 if every member of𝑋ଵ is a member of𝑌ଵ but every member of𝑌ଵ is not a 
member of𝑋ଵ i.e. if𝑋ଵ is a proper subset of𝑌ଵ i.e. 𝑋ଵ ⊂ 𝑌ଵ(or what is the same if is a 
proper subset of𝑋ଶ.) 
Equivalently, we say that𝛽 > 𝛼. 

Ex. For any positive cuts 𝜶 = (𝑿𝟏, 𝑿𝟐), 𝜷 = (𝒀𝟏, 𝒀𝟐), prove that (𝑿𝟏, 𝑿𝟐) + (𝒀𝟏, 𝒀𝟐) is positive 
i.e. 𝜶 > 0, 𝜷 > 0 ⇒ 𝛼 + 𝛽 > 0. 

[M.U. 74H] 

𝐏𝐫𝐨𝐨𝐟 ∶Let 𝛼 = (𝑋ଵ, 𝑋ଶ)and 𝛽 = (𝑌ଵ, 𝑌ଶ). 

 Also, let 𝛾 = (𝑋ଵ, 𝑋ଶ) + (𝑌ଵ, 𝑌ଶ) = (𝑍ଵ, 𝑍ଶ). 

 Since𝛼 is positive, thereforeOଵ ⊂ 𝑋ଵ. 

 SimilarlyOଵ ⊂ 𝑌ଵ. 

 Since𝑧ଵ ∈ 𝑍ଵ is obtained by adding elements of 𝑋ଵ with those of𝑌ଵ. 

 We getOଵ ⊂ 𝑍ଵ which implies that(𝑍ଵ, 𝑍ଶ) is a positive cut. 

 Thus 𝛼 > 0 (a positive cut), 𝛽 > 0 ⇒ 𝛼 + 𝛽 > 0. 

(i) Trichotomy Law of Cuts 

From the definition of cuts, it is evident that one and only one of the following relations 
holds. 

(i) 𝑋ଵ is a proper subset of 𝑌ଵ 
(ii) 𝑌ଵ is a proper subset of 𝑋ଵ 
(iii) 𝑋ଵ = 𝑌ଵ. 
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From this, we conclude that for any two cuts 

     𝛼 = (𝑋ଵ, 𝑋ଶ), 𝛽 = (𝑌ଵ, 𝑌ଶ) 

We have either 

(i) (𝑋ଵ, 𝑋ଶ) < (𝑌ଵ, 𝑌ଶ) or (𝑌ଵ, 𝑌ଶ) < (𝑋ଵ, 𝑋ଶ) or (𝑋ଵ, 𝑋ଶ) = (𝑌ଵ, 𝑌ଶ) 

i.e. either 𝛼 < 𝛽 or 𝛽 < 𝛼 or 𝛼 = 𝛽. 

Thus the trichotomylaw for the order relation in the system of cuts (real numbers) holds. 

(ii) Transitivity of the order relation 

𝑳𝒆𝒕𝜶 = (𝑿𝟏, 𝑿𝟐), 𝜷 = (𝒀𝟏, 𝒀𝟐) 𝒂𝒏𝒅 𝜸 = (𝒁𝟏, 𝒁𝟐)be three cuts such that 𝜶 < 𝛽 𝑎𝑛𝑑 𝛽 < 𝛾 
i.e. (𝑿𝟏, 𝑿𝟐) < (𝒀𝟏, 𝒀𝟐) and (𝒀𝟏, 𝒀𝟐) < (𝒁𝟏, 𝒁𝟐). Then (𝑿𝟏, 𝑿𝟐) < (𝒁𝟏, 𝒁𝟐) i.e. 𝜶 < 𝛾. 

By definition,𝑋ଵ ⊂ 𝑌ଵand𝑌ଵ ⊂ 𝑍ଵ. 

This⇒ that𝑌ଵ ⊂ 𝑍ଵ and hence (𝑋ଵ, 𝑋ଶ) < (𝑍ଵ, 𝑍ଶ) i.e. 𝛼 <  𝛾 

Thus we have shown that𝛼 <  𝛾and 𝛽 <  𝛾 ⇒ 𝛼 < 𝛾. 

1.32. TWO THEOREMS 
Theorem 𝐈. Let 𝒂 = (𝑨𝟏, 𝑨𝟐), 𝒃 = (𝑩𝟏, 𝑩𝟐) and 𝒄 = (𝑪𝟏, 𝑪𝟐) be cuts of rational 
numbers. Then 
(𝑨𝟏, 𝑨𝟐) > (𝑩𝟏, 𝑩𝟐) ⇒ (𝑨𝟏, 𝑨𝟐) + (𝑪𝟏, 𝑪𝟐) > (𝑩𝟏, 𝑩𝟐) + (𝑪𝟏, 𝑪𝟐) 
𝒊. 𝒆.   𝒂 > 𝑏 ⇒ 𝑎 + 𝑐 > 𝑏 + 𝑐.     [Bhag. 74H] 

 Proof :Let  𝑎 = (𝐴ଵ, 𝐴ଶ), 𝑏 = (𝐵ଵ, 𝐵ଶ) and 𝑐 = (𝐶ଵ, 𝐶ଶ). 

 Let  (𝐴ଵ, 𝐴ଶ) + (𝐶ଵ, 𝐶ଶ) = (𝑈ଵ, 𝑈ଶ) 

and   (𝐵ଵ, 𝐵ଶ) + (𝐶ଵ, 𝐶ଶ) = (𝑉ଵ, 𝑉ଶ). 
In order to prove that (𝑈ଵ, 𝑈ଶ) > (𝑉ଵ, 𝑉ଶ), we need to prove that 𝑉ଵ ⊂ 𝑈ଵ. 
Now, from the definition,  
    𝑈ଵ = {𝑥ଵ + 𝑧ଵ ∈ Q|𝑥ଵ ∈ 𝐴ଵ, 𝑧ଵ ∈ 𝐶ଵ}    …(1) 
    𝑉ଵ = {𝑦ଵ + 𝑧ଵ ∈ Q|𝑦ଵ ∈ 𝐵ଵ, 𝑧ଵ ∈ 𝐶ଵ}    …(2) 

It is given that(𝐴ଵ, 𝐴ଶ) > (𝐵ଵ, 𝐵ଶ
ᇱ) i.e.𝐵ଵ ⊂ 𝐴ଵ i.e.𝐵ଵ is a proper subset of 𝐴ଵ. Hence (2) in 

conjunction with (1) implies there are more rational points in𝑈ଵ than in 𝑉ଵ. That is, 𝑉ଵ ⊂ 𝑈ଵ. 

Hence the result follows : 

Cor.𝑎 ≥ 𝑏 ⇒ 𝑎 + 𝑐 ≥ 𝑏 + 𝑐. 

Theorem 𝐈𝐈. Let 𝒂 = (𝑨𝟏, 𝑨𝟐), 𝒃 = (𝑩𝟏, 𝑩𝟐) and 𝒄 = (𝑪𝟏, 𝑪𝟐) be cuts of rational 
numbers. Then 
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(𝑨𝟏, 𝑨𝟐) < (𝑩𝟏, 𝑩𝟐), (𝑪𝟏, 𝑪𝟐) > (𝐎𝟏, 𝐎𝟐) 
⇒ (𝑨𝟏, 𝑨𝟐)(𝑪𝟏, 𝑪𝟐) < (𝑩𝟏, 𝑩𝟐)(𝑪𝟏, 𝑪𝟐). 
𝒊. 𝒆.   𝒂 < 𝑏, 𝑐 > 0 ⇒ 𝒂𝒄 < 𝑏𝑐    [P.U. 71H] 

 Proof :First of all we suppose that𝑎 = (𝐴ଵ, 𝐴ଶ) and𝑏 = (𝐵ଵ, 𝐵ଶ) both are positive. 

Let     (𝐴ଵ, 𝐴ଶ)(𝐶ଵ, 𝐶ଶ) = (𝑈ଵ, 𝑈ଶ)     …(1) 

and     (𝐵ଵ, 𝐵ଶ)(𝐶ଵ, 𝐶ଶ) = (𝑉ଵ, 𝑉ଶ)     …(2) 

we need to prove that 𝑈ଵ ⊂ 𝑉ଵ. 

we observe first that since𝑎 > 0, 𝑏 > 0, 𝑐 > 0, therefore 𝑎𝑐 > 0, 𝑏𝑐 > 0 

i.e.     (𝑈ଵ, 𝑈ଶ) > (Oଵ, Oଶ)and (𝑉ଵ, 𝑉ଶ) > (Oଵ, Oଶ). 

It is given that(𝐴ଵ, 𝐴ଶ) < (𝐵ଵ, 𝐵ଶ) so that𝐴ଵ ⊂ 𝐵ଵ. It means that there are more positive 
rationals in𝐵ଵ than in𝐴ଵ and consequently there will be more positive rationals in𝑉ଵ than in𝑈ଵ 
and hence 𝑈ଵ < 𝑉ଵ. 

The other cases may be dealt with similarly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 42  
 

1.33. The RATIONAL AND IRRATIONAL CUTS 
𝐈. Sum and product of two rational cuts 

 Let(Xଵ, Xଶ) and(Yଵ, Yଶ) be any two rational cuts corresponding to the rational numbers𝑥 
and 𝑦respectively. 

That is, Xଵ ≡ the set of all rationals< 𝑥 

  Xଶ ≡the set of all rationals≥ 𝑥. 

SimilarlyYଵ ≡ {𝑟 ∈ Q: 𝑟 < 𝑦} 

   Yଶ ≡ {𝑟 ∈ Q: 𝑟 ≥ 𝑦}. 

It is easy to see that𝑥 + 𝑦 and𝑥𝑦 are the least members of upper classes of(Xଵ, Xଶ) + (Yଵ, Yଶ) 
and(Xଵ, Xଶ)(Yଵ, Yଶ) respectively. 

Since𝑥 + 𝑦 and𝑥𝑦 are rational numbers, therefore the sum and product of rational cuts is a 
rational cut. 

𝐈𝐈. Sum and product of a rational an irrational cuts 

Let (Xଵ, Xଶ) be a rational cut and let (Yଵ, Yଶ) be any irrational cut. Then −(Xଵ, Xଶ) is also 
rational. 

Now consider the identity 

   [(Xଵ, Xଶ) + (Yଵ, Yଶ)] + [−(Xଵ, Xଶ)] = (Yଵ, Yଶ). 

From the identity it follows that if is rational, then is rational. But it is given that is not rational. 
Hence cannot be rational. i.e. it must be irrational. In the same manner, by considering the 
identity 

{(Xଵ, Xଶ)(Yଵ, Yଶ)}(Xଵ, Xଶ)ିଵ = (Yଵ, Yଶ) 

Where     (Xଵ, Xଶ)ିଵ ≠ (Oଵ, Oଶ), 

We can show that the product(Xଵ, Xଶ)(Yଵ, Yଶ) of irrational. 

Note : The sum and product of irrationalcuts may be rational or irrational. 

For example, if (Xଵ, Xଶ) is irrational, then so is −(Xଵ, Xଶ). 

Now, consider the identity (Xଵ, Xଶ) + {−(Xଵ, Xଶ)} = (Oଵ, Oଶ). 

Since(Oଵ, Oଶ) is rational, therefore sum of two irrational cuts may be rational. 

Similarly from the identity(Xଵ, Xଶ)(Xଵ, Xଶ)ିଵ = (Iଵ, Iଶ), it follows that the product of two 
irrational cuts may be rational. 
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1.34. DENSITY THEOREM 
Theorem : Between any two distinct real numbers𝜶 and𝜷 there are infinity of rational 
numbers. 
[B.U. 53H, 68H; M.U.68H, 73H; R.U. 70H; Bhag 67H, 90H;Mithila 78H] 
𝐏𝐫𝐨𝐨𝐟 : Let 𝛼 = (Xଵ, Xଶ)and 𝛽 = (Yଵ, Yଶ) be two cuts and let 𝛼 < 𝛽 i.e. Xଵ ⊂ Yଵ. 
Our purpose will be served if we can show that there lie two rational numbers between 
𝛼and 𝛽. 
To this end, we wish to show that there exists a rational cut 𝑟 = (Rଵ, Rଶ) of the form 
      Rଵ = {𝑥: 𝑥 ∈ Q, 𝑥 < 𝑟} 

such that  Xଵ ⊂ Rଵ ⊂ Yଵ. 

Since 𝛼 < 𝛽, there exists a rational number 𝑝 such that 𝑝 ∈ Yଵ but 𝑝 ∉ Xଵ. 

Since 𝛽 is a cut, one of the defining properties of a cut asserts that in Yଵ. 

There is no largest rational number. 

Hence there exists 𝑟 ∈ Yଵ such that 𝑝 < 𝑟. 

But 𝑟 < 𝑟 is absurd and hence 𝑟 ∉ Rଵ. 

Now  𝑟 ∈ Yଵ and 𝑟 ∉ Rଵ ⇒ Rଵ ⊂ Yଵ    …(1) 

Again,  𝑝 < 𝑟 ⇒ 𝑝 ∈ Rଵ. 

Given  𝑝 ∉ Xଵ. 

Therefore 𝑝 ∈ Rଵ and 𝑝 ∉ Xଵ ⇒ Xଵ ⊂ Rଵ    …(2) 

From (1) and (2), we get 

  Xଵ ⊂ Rଵ ⊂ Yଵ. 

Similar is the case when 𝛼 < 𝛽. 

In a similar manner, we can show that there is another rational cut between 𝛼and 𝛽. 

Thus there must be at least two unequal rational numbers𝑟ଵ and𝑟ଶ say, between 𝛼and 𝛽. But 
we know that there are infinity of rational numbers between any two unequal rational numbers 
(here) 𝑟ଵand 𝑟ଶ. Hence there are infinity of rational numbers between two different real 
numbers 𝛼and 𝛽. 

1.35. THEOREM 
Between any two different real numbers, there are infinity of irrational numbers. 
[B.U. 68H;Bhag 67H, 90H; R.U. 70H; M.U.68H,73H] 
Proof :Suppose 𝛼 < 𝛽. 
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We have proved in the preceding theorem that there lie an infinite number of rational 
numbers between 𝛼and 𝛽. 
We pick up two rational numbers 𝑟ଵ and 𝑟ଶ from this infinite set of rationals such that 
  𝛼 < 𝑟ଵ < 𝑟ଶ < 𝛽. 
We want to prove that there exists an irrational number lying between 𝑟ଵand 𝑟ଶ. 
For this, we consider the real number 
  𝑟 = 𝑟ଵା

ೝమషೝభ

√మ

 

Clearly 𝑟 is an irrational real number and we find that 

   𝑟 > 𝑟ଵbecause 𝑟ଶ > 𝑟ଵ; 

And also 𝑟 < 𝑟ଶ because 

   𝑟ଶ − 𝑟 = 𝑟ଶ − 𝑟ଵ −
మିభ

√ଶ
 

    = (𝑟ଶ − 𝑟ଵ) ቀ1 −
ଵ

√ଶ
ቁwhich is > 0. 

Thus    𝑟ଵ < 𝑟 < 𝑟ଶ. 

Hence   𝛼 < 𝑟ଵ < 𝑟 < 𝑟ଶ < 𝛽. 

Thus we have shown that there exists one irrational number 𝑟 between 𝛼and 𝛽. But𝑟ଵ and 𝑟ଶ 
are arbitrary rationals lying between 𝛼and 𝛽. Now since there are infinity of rational numbers𝑟ଵ 
and 𝑟ଶ between 𝛼and 𝛽, hence we get infinity of rational real numbers according to the scheme 
above. This proves the theorem. 

1.36. SECTION OF THE REAL NUMBERS : COMPLETENESS THEOREM 
Let us recall that in art 1.13 we considered the sections of rational numbers i.e. we 
divided the set Qof rational numbers into two classes L and R characterised  by the 
following properties: 
(i) 𝐿 ≠ ∅, 𝑅 ≠ ∅i.e. each class is non-empty. 
(ii) Every rational number belongs to either 𝐿 or 𝑅 i.e. no rational number escapes 

classification. 
(iii) Every member of L is less than every member of R 

i.e. 𝑥 ∈ 𝐿, 𝑦 ∈ 𝑅 ⇒ 𝑥 < 𝑦. 

The two classes 𝐿 and 𝑅 are called the lower class and upper class respectively. 

This type of division of the set Q into two classes is called a ‘section’.  

The set of all upper bounds of 𝐿 is the set 𝑅 and the set of all lower bounds of 𝑅 is the set 𝐿. 
Sometimes, we use the term ‘maximum’ or ‘greatest’ for the least upper bound (lub) of a set 
when it belongs to the set. When the glb of a set is in the set, it is sometimes called the 
‘minimum’ or ‘least’ of the set. 




